--- tags: - generated_from_trainer datasets: - evanarlian/common_voice_11_0_id_filtered metrics: - wer model-index: - name: wav2vec2-xls-r-164m-id results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: evanarlian/common_voice_11_0_id_filtered type: evanarlian/common_voice_11_0_id_filtered metrics: - name: Wer type: wer value: 0.2923162069919749 --- # wav2vec2-xls-r-164m-id This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-164m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-164m-id) on the evanarlian/common_voice_11_0_id_filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.2865 - Wer: 0.2923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 80.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4047 | 4.59 | 5000 | 1.0167 | 0.9138 | | 0.587 | 9.18 | 10000 | 0.4639 | 0.5615 | | 0.3782 | 13.77 | 15000 | 0.3375 | 0.4496 | | 0.2867 | 18.37 | 20000 | 0.2881 | 0.4022 | | 0.2519 | 22.96 | 25000 | 0.2775 | 0.3700 | | 0.1941 | 27.55 | 30000 | 0.2701 | 0.3516 | | 0.1727 | 32.14 | 35000 | 0.2795 | 0.3486 | | 0.1448 | 36.73 | 40000 | 0.2878 | 0.3364 | | 0.1251 | 41.32 | 45000 | 0.2649 | 0.3275 | | 0.113 | 45.91 | 50000 | 0.2862 | 0.3168 | | 0.0994 | 50.51 | 55000 | 0.2798 | 0.3091 | | 0.0938 | 55.1 | 60000 | 0.2864 | 0.3070 | | 0.0853 | 59.69 | 65000 | 0.2860 | 0.3069 | | 0.0724 | 64.28 | 70000 | 0.2994 | 0.3003 | | 0.0723 | 68.87 | 75000 | 0.2951 | 0.2983 | | 0.0666 | 73.46 | 80000 | 0.2886 | 0.2941 | | 0.0659 | 78.05 | 85000 | 0.2865 | 0.2923 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2