File size: 12,857 Bytes
989823e e3048b4 989823e e3048b4 1a5404a 27fa54c 1a5404a e3048b4 83bcd2c e3048b4 fbf44e9 4099131 21f2b08 e60ea41 717a6f0 f4096b3 8669279 218a98e faf9056 3f46e12 4bceb24 af61c0a 84bd068 87e04ff 7c9ecac 11163fa 2360ca9 bf7e636 a8dc03e 3aad26c 8709491 618fb68 93ff89e d8b0ac4 a658f87 a4536d6 a952da6 ae56c5c fe48589 81d5f09 5f18301 c1b8edc 8faadbf cf344fc b5bacaa 0be2e99 a411e4f ebce84c b0b2467 28fa1e2 4342be5 204b7ac b4b99ef 5afbfa7 1a6dea0 363a62e 0b35c12 a43148b 83bcd2c 27fa54c 8569f61 0a0582d 2f498f6 258ce97 acb96f3 aae2cfa 2085d98 74ff14a fc3a7b8 286cf99 b372f79 3c629c4 c1fa690 9997813 67d3aff 3146cd4 976643c d9a4eac b001459 e589081 163c1ba 41e58ab a9d6ad1 28ee712 88ea93a d61d8f5 630fabf 8cc17ea 3df47f8 b882f93 5e013ae e07266c 4760db2 0d6b012 e346e67 e156651 f8b625f b0bb7f5 09ad1f3 727c7d5 a3119fd 1a5404a e3048b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
license: other
tags:
- generated_from_keras_callback
model-index:
- name: AhamadShaik/SegFormer_RESIZE_NLM
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# AhamadShaik/SegFormer_RESIZE_NLM
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0426
- Train Dice Coef: 0.8813
- Train Iou: 0.7897
- Validation Loss: 0.0433
- Validation Dice Coef: 0.8891
- Validation Iou: 0.8016
- Train Lr: 1e-10
- Epoch: 92
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 1e-10, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Dice Coef | Train Iou | Validation Loss | Validation Dice Coef | Validation Iou | Train Lr | Epoch |
|:----------:|:---------------:|:---------:|:---------------:|:--------------------:|:--------------:|:--------:|:-----:|
| 0.2282 | 0.5657 | 0.4102 | 0.1322 | 0.6524 | 0.4967 | 1e-04 | 0 |
| 0.1354 | 0.6853 | 0.5329 | 0.0855 | 0.7853 | 0.6544 | 1e-04 | 1 |
| 0.1105 | 0.7364 | 0.5924 | 0.0737 | 0.8147 | 0.6916 | 1e-04 | 2 |
| 0.0985 | 0.7610 | 0.6226 | 0.0632 | 0.8518 | 0.7440 | 1e-04 | 3 |
| 0.0933 | 0.7745 | 0.6399 | 0.0627 | 0.8455 | 0.7351 | 1e-04 | 4 |
| 0.0886 | 0.7856 | 0.6535 | 0.0584 | 0.8603 | 0.7566 | 1e-04 | 5 |
| 0.0831 | 0.7971 | 0.6695 | 0.0559 | 0.8621 | 0.7596 | 1e-04 | 6 |
| 0.0770 | 0.8107 | 0.6867 | 0.0530 | 0.8726 | 0.7756 | 1e-04 | 7 |
| 0.0741 | 0.8160 | 0.6942 | 0.0512 | 0.8775 | 0.7832 | 1e-04 | 8 |
| 0.0750 | 0.8163 | 0.6945 | 0.0581 | 0.8627 | 0.7606 | 1e-04 | 9 |
| 0.0678 | 0.8306 | 0.7138 | 0.0531 | 0.8719 | 0.7745 | 1e-04 | 10 |
| 0.0659 | 0.8341 | 0.7196 | 0.0519 | 0.8738 | 0.7781 | 1e-04 | 11 |
| 0.0626 | 0.8412 | 0.7294 | 0.0496 | 0.8789 | 0.7853 | 1e-04 | 12 |
| 0.0637 | 0.8383 | 0.7257 | 0.0515 | 0.8772 | 0.7828 | 1e-04 | 13 |
| 0.0601 | 0.8462 | 0.7367 | 0.0498 | 0.8765 | 0.7814 | 1e-04 | 14 |
| 0.0573 | 0.8525 | 0.7458 | 0.0474 | 0.8817 | 0.7897 | 1e-04 | 15 |
| 0.0565 | 0.8520 | 0.7456 | 0.0459 | 0.8850 | 0.7948 | 1e-04 | 16 |
| 0.0633 | 0.8381 | 0.7262 | 0.0487 | 0.8797 | 0.7868 | 1e-04 | 17 |
| 0.0558 | 0.8544 | 0.7489 | 0.0476 | 0.8828 | 0.7917 | 1e-04 | 18 |
| 0.0523 | 0.8617 | 0.7595 | 0.0454 | 0.8872 | 0.7983 | 1e-04 | 19 |
| 0.0516 | 0.8632 | 0.7617 | 0.0465 | 0.8838 | 0.7934 | 1e-04 | 20 |
| 0.0515 | 0.8636 | 0.7625 | 0.0494 | 0.8816 | 0.7894 | 1e-04 | 21 |
| 0.0518 | 0.8630 | 0.7615 | 0.0487 | 0.8836 | 0.7930 | 1e-04 | 22 |
| 0.0521 | 0.8616 | 0.7595 | 0.0483 | 0.8822 | 0.7908 | 1e-04 | 23 |
| 0.0510 | 0.8634 | 0.7624 | 0.0501 | 0.8814 | 0.7899 | 1e-04 | 24 |
| 0.0485 | 0.8703 | 0.7728 | 0.0439 | 0.8892 | 0.8018 | 5e-06 | 25 |
| 0.0464 | 0.8755 | 0.7807 | 0.0433 | 0.8890 | 0.8015 | 5e-06 | 26 |
| 0.0456 | 0.8760 | 0.7817 | 0.0439 | 0.8884 | 0.8004 | 5e-06 | 27 |
| 0.0446 | 0.8790 | 0.7860 | 0.0428 | 0.8896 | 0.8024 | 5e-06 | 28 |
| 0.0443 | 0.8786 | 0.7855 | 0.0426 | 0.8905 | 0.8038 | 5e-06 | 29 |
| 0.0439 | 0.8795 | 0.7867 | 0.0439 | 0.8881 | 0.7999 | 5e-06 | 30 |
| 0.0436 | 0.8800 | 0.7876 | 0.0429 | 0.8902 | 0.8032 | 5e-06 | 31 |
| 0.0430 | 0.8809 | 0.7890 | 0.0439 | 0.8876 | 0.7992 | 5e-06 | 32 |
| 0.0427 | 0.8812 | 0.7894 | 0.0432 | 0.8892 | 0.8016 | 5e-06 | 33 |
| 0.0431 | 0.8798 | 0.7875 | 0.0433 | 0.8895 | 0.8022 | 5e-06 | 34 |
| 0.0425 | 0.8816 | 0.7903 | 0.0435 | 0.8892 | 0.8016 | 2.5e-07 | 35 |
| 0.0420 | 0.8826 | 0.7917 | 0.0433 | 0.8894 | 0.8021 | 2.5e-07 | 36 |
| 0.0423 | 0.8833 | 0.7926 | 0.0429 | 0.8893 | 0.8018 | 2.5e-07 | 37 |
| 0.0420 | 0.8833 | 0.7929 | 0.0430 | 0.8895 | 0.8023 | 2.5e-07 | 38 |
| 0.0424 | 0.8832 | 0.7924 | 0.0437 | 0.8890 | 0.8013 | 2.5e-07 | 39 |
| 0.0422 | 0.8824 | 0.7914 | 0.0427 | 0.8897 | 0.8024 | 1.25e-08 | 40 |
| 0.0426 | 0.8824 | 0.7913 | 0.0431 | 0.8900 | 0.8030 | 1.25e-08 | 41 |
| 0.0424 | 0.8832 | 0.7926 | 0.0433 | 0.8893 | 0.8019 | 1.25e-08 | 42 |
| 0.0424 | 0.8830 | 0.7922 | 0.0436 | 0.8886 | 0.8008 | 1.25e-08 | 43 |
| 0.0427 | 0.8806 | 0.7888 | 0.0434 | 0.8893 | 0.8020 | 1.25e-08 | 44 |
| 0.0421 | 0.8829 | 0.7921 | 0.0431 | 0.8899 | 0.8028 | 6.25e-10 | 45 |
| 0.0427 | 0.8817 | 0.7901 | 0.0431 | 0.8896 | 0.8023 | 6.25e-10 | 46 |
| 0.0422 | 0.8825 | 0.7916 | 0.0433 | 0.8895 | 0.8022 | 6.25e-10 | 47 |
| 0.0423 | 0.8823 | 0.7912 | 0.0431 | 0.8897 | 0.8024 | 6.25e-10 | 48 |
| 0.0423 | 0.8826 | 0.7916 | 0.0433 | 0.8895 | 0.8021 | 6.25e-10 | 49 |
| 0.0425 | 0.8827 | 0.7918 | 0.0433 | 0.8896 | 0.8023 | 1e-10 | 50 |
| 0.0421 | 0.8838 | 0.7937 | 0.0431 | 0.8891 | 0.8014 | 1e-10 | 51 |
| 0.0424 | 0.8820 | 0.7907 | 0.0436 | 0.8884 | 0.8003 | 1e-10 | 52 |
| 0.0424 | 0.8824 | 0.7915 | 0.0426 | 0.8899 | 0.8029 | 1e-10 | 53 |
| 0.0423 | 0.8828 | 0.7920 | 0.0433 | 0.8894 | 0.8020 | 1e-10 | 54 |
| 0.0424 | 0.8818 | 0.7905 | 0.0431 | 0.8901 | 0.8031 | 1e-10 | 55 |
| 0.0421 | 0.8823 | 0.7911 | 0.0438 | 0.8887 | 0.8008 | 1e-10 | 56 |
| 0.0421 | 0.8821 | 0.7909 | 0.0426 | 0.8896 | 0.8023 | 1e-10 | 57 |
| 0.0420 | 0.8818 | 0.7906 | 0.0428 | 0.8903 | 0.8035 | 1e-10 | 58 |
| 0.0416 | 0.8845 | 0.7945 | 0.0434 | 0.8889 | 0.8012 | 1e-10 | 59 |
| 0.0421 | 0.8830 | 0.7921 | 0.0429 | 0.8900 | 0.8029 | 1e-10 | 60 |
| 0.0420 | 0.8834 | 0.7927 | 0.0433 | 0.8888 | 0.8010 | 1e-10 | 61 |
| 0.0425 | 0.8820 | 0.7909 | 0.0429 | 0.8896 | 0.8023 | 1e-10 | 62 |
| 0.0421 | 0.8827 | 0.7919 | 0.0431 | 0.8906 | 0.8039 | 1e-10 | 63 |
| 0.0422 | 0.8815 | 0.7901 | 0.0429 | 0.8901 | 0.8031 | 1e-10 | 64 |
| 0.0420 | 0.8833 | 0.7927 | 0.0430 | 0.8899 | 0.8029 | 1e-10 | 65 |
| 0.0426 | 0.8822 | 0.7911 | 0.0431 | 0.8891 | 0.8015 | 1e-10 | 66 |
| 0.0422 | 0.8829 | 0.7923 | 0.0428 | 0.8902 | 0.8033 | 1e-10 | 67 |
| 0.0424 | 0.8813 | 0.7898 | 0.0435 | 0.8893 | 0.8019 | 1e-10 | 68 |
| 0.0420 | 0.8826 | 0.7918 | 0.0430 | 0.8896 | 0.8024 | 1e-10 | 69 |
| 0.0428 | 0.8811 | 0.7895 | 0.0434 | 0.8900 | 0.8030 | 1e-10 | 70 |
| 0.0422 | 0.8832 | 0.7926 | 0.0431 | 0.8895 | 0.8021 | 1e-10 | 71 |
| 0.0427 | 0.8816 | 0.7902 | 0.0432 | 0.8898 | 0.8026 | 1e-10 | 72 |
| 0.0426 | 0.8817 | 0.7904 | 0.0434 | 0.8891 | 0.8015 | 1e-10 | 73 |
| 0.0424 | 0.8811 | 0.7897 | 0.0434 | 0.8899 | 0.8028 | 1e-10 | 74 |
| 0.0432 | 0.8807 | 0.7890 | 0.0430 | 0.8897 | 0.8025 | 1e-10 | 75 |
| 0.0423 | 0.8816 | 0.7904 | 0.0435 | 0.8894 | 0.8019 | 1e-10 | 76 |
| 0.0418 | 0.8838 | 0.7935 | 0.0431 | 0.8897 | 0.8025 | 1e-10 | 77 |
| 0.0425 | 0.8817 | 0.7901 | 0.0428 | 0.8898 | 0.8026 | 1e-10 | 78 |
| 0.0424 | 0.8818 | 0.7904 | 0.0434 | 0.8891 | 0.8015 | 1e-10 | 79 |
| 0.0419 | 0.8828 | 0.7920 | 0.0431 | 0.8901 | 0.8031 | 1e-10 | 80 |
| 0.0429 | 0.8812 | 0.7897 | 0.0425 | 0.8903 | 0.8034 | 1e-10 | 81 |
| 0.0419 | 0.8829 | 0.7922 | 0.0427 | 0.8905 | 0.8038 | 1e-10 | 82 |
| 0.0426 | 0.8820 | 0.7908 | 0.0431 | 0.8894 | 0.8019 | 1e-10 | 83 |
| 0.0424 | 0.8830 | 0.7921 | 0.0433 | 0.8893 | 0.8018 | 1e-10 | 84 |
| 0.0420 | 0.8832 | 0.7927 | 0.0432 | 0.8894 | 0.8019 | 1e-10 | 85 |
| 0.0421 | 0.8828 | 0.7921 | 0.0426 | 0.8907 | 0.8042 | 1e-10 | 86 |
| 0.0424 | 0.8817 | 0.7903 | 0.0430 | 0.8905 | 0.8038 | 1e-10 | 87 |
| 0.0423 | 0.8819 | 0.7908 | 0.0431 | 0.8901 | 0.8032 | 1e-10 | 88 |
| 0.0428 | 0.8809 | 0.7891 | 0.0429 | 0.8897 | 0.8025 | 1e-10 | 89 |
| 0.0424 | 0.8818 | 0.7903 | 0.0434 | 0.8897 | 0.8025 | 1e-10 | 90 |
| 0.0422 | 0.8827 | 0.7918 | 0.0428 | 0.8902 | 0.8033 | 1e-10 | 91 |
| 0.0426 | 0.8813 | 0.7897 | 0.0433 | 0.8891 | 0.8016 | 1e-10 | 92 |
### Framework versions
- Transformers 4.27.4
- TensorFlow 2.10.1
- Datasets 2.11.0
- Tokenizers 0.13.3
|