File size: 3,097 Bytes
989823e
e3048b4
 
 
 
 
 
989823e
e3048b4
 
 
 
 
 
 
 
af61c0a
 
 
 
 
 
e3048b4
af61c0a
e3048b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbf44e9
4099131
21f2b08
e60ea41
717a6f0
f4096b3
8669279
218a98e
faf9056
3f46e12
4bceb24
af61c0a
e3048b4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: other
tags:
- generated_from_keras_callback
model-index:
- name: AhamadShaik/SegFormer_RESIZE_NLM
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# AhamadShaik/SegFormer_RESIZE_NLM

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0626
- Train Dice Coef: 0.8412
- Train Iou: 0.7294
- Validation Loss: 0.0496
- Validation Dice Coef: 0.8789
- Validation Iou: 0.7853
- Train Lr: 1e-04
- Epoch: 12

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Dice Coef | Train Iou | Validation Loss | Validation Dice Coef | Validation Iou | Train Lr | Epoch |
|:----------:|:---------------:|:---------:|:---------------:|:--------------------:|:--------------:|:--------:|:-----:|
| 0.2282     | 0.5657          | 0.4102    | 0.1322          | 0.6524               | 0.4967         | 1e-04    | 0     |
| 0.1354     | 0.6853          | 0.5329    | 0.0855          | 0.7853               | 0.6544         | 1e-04    | 1     |
| 0.1105     | 0.7364          | 0.5924    | 0.0737          | 0.8147               | 0.6916         | 1e-04    | 2     |
| 0.0985     | 0.7610          | 0.6226    | 0.0632          | 0.8518               | 0.7440         | 1e-04    | 3     |
| 0.0933     | 0.7745          | 0.6399    | 0.0627          | 0.8455               | 0.7351         | 1e-04    | 4     |
| 0.0886     | 0.7856          | 0.6535    | 0.0584          | 0.8603               | 0.7566         | 1e-04    | 5     |
| 0.0831     | 0.7971          | 0.6695    | 0.0559          | 0.8621               | 0.7596         | 1e-04    | 6     |
| 0.0770     | 0.8107          | 0.6867    | 0.0530          | 0.8726               | 0.7756         | 1e-04    | 7     |
| 0.0741     | 0.8160          | 0.6942    | 0.0512          | 0.8775               | 0.7832         | 1e-04    | 8     |
| 0.0750     | 0.8163          | 0.6945    | 0.0581          | 0.8627               | 0.7606         | 1e-04    | 9     |
| 0.0678     | 0.8306          | 0.7138    | 0.0531          | 0.8719               | 0.7745         | 1e-04    | 10    |
| 0.0659     | 0.8341          | 0.7196    | 0.0519          | 0.8738               | 0.7781         | 1e-04    | 11    |
| 0.0626     | 0.8412          | 0.7294    | 0.0496          | 0.8789               | 0.7853         | 1e-04    | 12    |


### Framework versions

- Transformers 4.27.4
- TensorFlow 2.10.1
- Datasets 2.11.0
- Tokenizers 0.13.3