File size: 1,754 Bytes
989823e
e3048b4
 
 
 
 
 
989823e
e3048b4
 
 
 
 
 
 
 
fbf44e9
 
 
 
 
 
e3048b4
fbf44e9
e3048b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbf44e9
e3048b4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: other
tags:
- generated_from_keras_callback
model-index:
- name: AhamadShaik/SegFormer_RESIZE_NLM
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# AhamadShaik/SegFormer_RESIZE_NLM

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1354
- Train Dice Coef: 0.6853
- Train Iou: 0.5329
- Validation Loss: 0.0855
- Validation Dice Coef: 0.7853
- Validation Iou: 0.6544
- Train Lr: 1e-04
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Dice Coef | Train Iou | Validation Loss | Validation Dice Coef | Validation Iou | Train Lr | Epoch |
|:----------:|:---------------:|:---------:|:---------------:|:--------------------:|:--------------:|:--------:|:-----:|
| 0.2282     | 0.5657          | 0.4102    | 0.1322          | 0.6524               | 0.4967         | 1e-04    | 0     |
| 0.1354     | 0.6853          | 0.5329    | 0.0855          | 0.7853               | 0.6544         | 1e-04    | 1     |


### Framework versions

- Transformers 4.27.4
- TensorFlow 2.10.1
- Datasets 2.11.0
- Tokenizers 0.13.3