--- license: other tags: - generated_from_keras_callback model-index: - name: AhamadShaik/SegFormer_RESIZE_NLM results: [] --- # AhamadShaik/SegFormer_RESIZE_NLM This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1354 - Train Dice Coef: 0.6853 - Train Iou: 0.5329 - Validation Loss: 0.0855 - Validation Dice Coef: 0.7853 - Validation Iou: 0.6544 - Train Lr: 1e-04 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Dice Coef | Train Iou | Validation Loss | Validation Dice Coef | Validation Iou | Train Lr | Epoch | |:----------:|:---------------:|:---------:|:---------------:|:--------------------:|:--------------:|:--------:|:-----:| | 0.2282 | 0.5657 | 0.4102 | 0.1322 | 0.6524 | 0.4967 | 1e-04 | 0 | | 0.1354 | 0.6853 | 0.5329 | 0.0855 | 0.7853 | 0.6544 | 1e-04 | 1 | ### Framework versions - Transformers 4.27.4 - TensorFlow 2.10.1 - Datasets 2.11.0 - Tokenizers 0.13.3