File size: 2,054 Bytes
e4c15b3 2e5639e e4c15b3 2e5639e e4c15b3 2e5639e e4c15b3 2e5639e e4c15b3 2e5639e e4c15b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper-event
- generated_from_trainer
datasets:
- nadsoft/QASR-Speech-Resource
metrics:
- wer
model-index:
- name: Whisper Small Arabic
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: nadsoft/QASR-Speech-Resource default
type: nadsoft/QASR-Speech-Resource
metrics:
- name: Wer
type: wer
value: 42.76086285863452
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Arabic
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the nadsoft/QASR-Speech-Resource default dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5583
- Wer: 42.7609
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.7005 | 0.2 | 2000 | 0.7135 | 51.5366 |
| 0.6267 | 0.4 | 4000 | 0.6309 | 50.9433 |
| 0.5886 | 0.6 | 6000 | 0.5892 | 50.0225 |
| 0.5627 | 0.8 | 8000 | 0.5679 | 43.9450 |
| 0.5694 | 1.0 | 10000 | 0.5583 | 42.7609 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.17.1.dev0
- Tokenizers 0.15.1
|