Ahsankhan123
commited on
Commit
•
2170956
1
Parent(s):
26d39c5
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -765.91 +/- 483.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c92584cec20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c92584cecb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c92584ced40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c92584cedd0>", "_build": "<function ActorCriticPolicy._build at 0x7c92584cee60>", "forward": "<function ActorCriticPolicy.forward at 0x7c92584ceef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c92584cef80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c92584cf010>", "_predict": "<function ActorCriticPolicy._predict at 0x7c92584cf0a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c92584cf130>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c92584cf1c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c92584cf250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c92584ca1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690177218746604419, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZclD0SkIM/sjwlPtfFRr9MfOI9locWPAAAAAAAAAAAzYIwPIr2tj9CH9Q9GdHaOwxYAL3l13e9AAAAAAAAAADzCpQ9OpaoP4pphj5JHMO+zOJpPKqQ2j0AAAAAAAAAANp87r44lFg/OraLv/G0Ub+d7Ig/ywXbPgAAAAAAAAAAsxL8PbLmlT+igyw/UNI7v1vIib17h3c9AAAAAAAAAACQ8I8+obs2P4jMJz8lXnu/BpbSvuvb970AAAAAAAAAADPnID4X/zk/XlxrviakgL8DqxY/3McvPgAAAAAAAAAAZgh1POp8nj/gV909apoOv1GHEr3adtE8AAAAAAAAAADVdKW+DwoqPwKpV785FYK/0r7ZPuprPj4AAAAAAAAAAGZ5rzxbDhU/sicvu0E2gr/S8uA8a51ZvQAAAAAAAAAAkh1Bvw629T06dG6/h+Wtv9ZpfD51qFK+AAAAAAAAgD9A7vw9NxtYPwv/Tj6DAXu/if3bvaZTE7wAAAAAAAAAAHObGz6Ly8c/jrUHP2qBvbwa7Ee+lxOJvQAAAAAAAAAAwxVYvoFETD9OzTq/1IyHv1bz8z06s8U9AAAAAAAAAACtF2Q+/5lZP7zhDj9+r1m/Nr47vs2ToT0AAAAAAAAAAJrJxbz4+Ws/X1wBPjBIWL+75/O+XheCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEpV9gF5fMSMAWyUS1GMAXSUR0Bu6iBTXJ5ndX2UKGgGR8BfMLOzIFNdaAdLYWgIR0Bu6+qPwNLEdX2UKGgGR8BaclUuL740aAdLVGgIR0Bu7CQtBfKIdX2UKGgGR8Bx59ZzPrv9aAdLgGgIR0Bu673IuGsWdX2UKGgGR8Bg6XNxEORUaAdLTGgIR0Bu7Dcwg1WKdX2UKGgGR0AbbLdN34bkaAdLYmgIR0Bu7TnoxHoYdX2UKGgGR8BctRpcophGaAdLWWgIR0Bu7qDZlFtsdX2UKGgGR8BceCNOuaF3aAdLY2gIR0Bu8KxNZeRgdX2UKGgGR8BckGrjo6jnaAdLR2gIR0Bu8scMmWt2dX2UKGgGR8BZaB02cawVaAdLQWgIR0Bu8umNzbN9dX2UKGgGR8BjsfdoFmnPaAdLSGgIR0Bu9GmaYu01dX2UKGgGR8BPjIEr5IpZaAdLhWgIR0Bu9SmO2iL3dX2UKGgGR8BTv0ojOcDsaAdLVmgIR0Bu9UH0K7ZndX2UKGgGR8Brfk1EVnEmaAdLQWgIR0Bu9bS1E3KkdX2UKGgGR8Bx1/gccU/OaAdLbWgIR0Bu9eJm/WUbdX2UKGgGR8A9m7GNrCWNaAdLXGgIR0Bu9pYDDCP7dX2UKGgGR8BYUkQPI4lyaAdLUmgIR0Bu+Av114gSdX2UKGgGRz/2lWjoIOYqaAdLiWgIR0Bu+TcRDkU9dX2UKGgGR8Bk9BnezlcRaAdLZWgIR0Bu+OEVWS2ZdX2UKGgGR8B6DB9Ujs2OaAdLYGgIR0Bu+em+CbtrdX2UKGgGR8BjmLIV/MGHaAdLO2gIR0Bu+zqjafz0dX2UKGgGR8BiaGnQ6ZH/aAdLQGgIR0Bu/A1aW5YpdX2UKGgGR8BumtHavicYaAdLaWgIR0Bu/Xk1dgOSdX2UKGgGR8B5+sONHYpVaAdLWWgIR0Bu/WWyC4BndX2UKGgGR8BWNmf9P1tgaAdLTWgIR0BvAFuDSPU8dX2UKGgGR8B2AxbjcVQAaAdLiGgIR0BvAMB2fTTfdX2UKGgGR8BfjF89fTkRaAdLTGgIR0BvAONFSbYsdX2UKGgGR8BcOi8OCoS+aAdLPmgIR0BvAxDXvphXdX2UKGgGR8BXLwLmZE2HaAdLOGgIR0BvA6qQzUI+dX2UKGgGR8Bd1HO4XoC/aAdLXWgIR0BvA161LJ0XdX2UKGgGR8BjhLpHI6sAaAdLTmgIR0BvBaKm8/UwdX2UKGgGR8BxmZdQfp2VaAdLbWgIR0BvBXHNorWidX2UKGgGR8BVhWf5DZ13aAdLp2gIR0BvBTiIcinpdX2UKGgGR8B0f928qWkaaAdLeGgIR0BvCQMH8jzJdX2UKGgGR8BYviJoCdSVaAdLdmgIR0BvCpLkCFK1dX2UKGgGR0A7JMvh60IDaAdLR2gIR0BvCull9SdfdX2UKGgGR8BWiXKGL1mKaAdLQGgIR0BvDgO6NEPUdX2UKGgGR8BdY118stkGaAdLgWgIR0BvD5uQ6p5vdX2UKGgGR8BlABbGFSKnaAdLeWgIR0BvD07EHdGidX2UKGgGR8BTxmyC4BmxaAdLXmgIR0BvEHsXzlLfdX2UKGgGR8Bc432M85jpaAdLPWgIR0BvE1YGMXJpdX2UKGgGR8BfBpiAlOXWaAdLWmgIR0BvFFq33HrAdX2UKGgGR8Beuq/RE4NraAdLWWgIR0BvFHJJXhfjdX2UKGgGR8Bp6AHeJpFkaAdLfGgIR0BvFP9xZMcqdX2UKGgGR8BwWQ5YHPeIaAdLUmgIR0BvFirT6SDAdX2UKGgGR8BV2Ka1Cw8oaAdLWWgIR0BvFyyyD7IldX2UKGgGR8B24897ngYQaAdLWGgIR0BvF7YmLLpzdX2UKGgGR8B4XrLPldTpaAdLZ2gIR0BvHFjbzshQdX2UKGgGR8BFbwH7gsK9aAdLQGgIR0BvHONkvsZ6dX2UKGgGR8BtYVjiGWUsaAdLZmgIR0BvHzPWxyGSdX2UKGgGR8BsfjsniNsFaAdLSmgIR0BvH/QID5j6dX2UKGgGR8Bwehj0+TvBaAdLe2gIR0BvH/nGKhtcdX2UKGgGR8BWKrrC3w1BaAdLOmgIR0BvIHw1BMSLdX2UKGgGR8BX+lA7gbZOaAdLX2gIR0BvI4lY2bXpdX2UKGgGR8BlIjohY/3WaAdLR2gIR0BvI40uUUwjdX2UKGgGR8Bx6BvCMxXXaAdLdmgIR0BvJClgtvn9dX2UKGgGR8BorY1R+BpYaAdLamgIR0BvJGh9LHuJdX2UKGgGR8BpeD544ZMtaAdLQmgIR0BvJTOxB3RpdX2UKGgGR8Be1z0xubZwaAdLfWgIR0BvJWBnSOR1dX2UKGgGR8BKpX6InBtUaAdLVWgIR0BvKFkz41xbdX2UKGgGR8BY4dfw7T2GaAdLaGgIR0BvKXiaRZEEdX2UKGgGR8BeFRqsU7CBaAdLdmgIR0BvK1wT/Q0GdX2UKGgGR8BgAJClabF1aAdLdGgIR0BvLfmPo3aSdX2UKGgGR8B2vkxM36yjaAdLUmgIR0BvLcQNCqp+dX2UKGgGR8Bw346CDmKZaAdLYWgIR0BvMCPIXCTEdX2UKGgGR8BzWkAo5PuYaAdLV2gIR0BvMQLThHbzdX2UKGgGR8B0eBLi++M7aAdLVGgIR0BvMb+o99tudX2UKGgGR8Bl1gz1schlaAdLRmgIR0BvMiyIHkcTdX2UKGgGR8BaWFyWAwwkaAdLQmgIR0BvMyT6i0v5dX2UKGgGR8BcGcXrMTviaAdLR2gIR0BvNBjawljWdX2UKGgGR8BhILVMEidKaAdLX2gIR0BvM7fk3juKdX2UKGgGR8BWm/Zdv864aAdLVGgIR0BvNaxZ+x4ZdX2UKGgGR8BeeeVX3g1naAdLaWgIR0BvNcBGQSzxdX2UKGgGR8BzQkaxX4j9aAdLWmgIR0BvNyb2Dg62dX2UKGgGR8BSFNKVY6n0aAdLTGgIR0BvOGLk0aZQdX2UKGgGR8B4xEtVaOghaAdLcGgIR0BvOqGpMpPRdX2UKGgGR8B570yULUkOaAdLVWgIR0BvO0AaNuLrdX2UKGgGR8BdLOjRD1GtaAdLUGgIR0BvPBG6PKdQdX2UKGgGR8BffJiy6cy4aAdLRWgIR0BvO+LP2PDHdX2UKGgGR8BNXfK6nR9gaAdLQWgIR0BvQEjs2NvPdX2UKGgGR8BUcJMURFqjaAdLQGgIR0BvQRMewLVndX2UKGgGR8BsmDbnHNoraAdLUWgIR0BvQQiRnvlVdX2UKGgGR8BvCfustCiRaAdLXmgIR0BvQXn2ZiNLdX2UKGgGR8Byltmwqy4XaAdLTWgIR0BvQbiQ1aW5dX2UKGgGR8Bhk0EA5q/NaAdLVmgIR0BvQ9eD3/PxdX2UKGgGR8B2BHJwKjSHaAdLT2gIR0BvRggeRxLkdX2UKGgGR8BoGP0ulGgBaAdLZWgIR0BvRjnoxHoYdX2UKGgGR8Bv9VzQu27WaAdLSmgIR0BvR+ICU5dXdX2UKGgGR8AlsKeCkGiYaAdLY2gIR0BvSECo0hvBdX2UKGgGR8BVZvexfOUuaAdLZmgIR0BvSxUFSsKcdX2UKGgGR8BcYNCZ4Oc2aAdLUmgIR0BvTBXOnl4kdX2UKGgGR8BXPMBIWgvlaAdLU2gIR0BvTPBguyu7dX2UKGgGR8BnfXPC2tuDaAdLaGgIR0BvTP3Hq/ucdX2UKGgGR8BePrTUiILxaAdLPGgIR0BvThGpda+wdX2UKGgGR8Bgp4pDu0CzaAdLW2gIR0BvT4jrzGxVdX2UKGgGR8Bf/NDUmUnpaAdLQmgIR0BvUAlhPTG6dX2UKGgGR8BYwI42jwhGaAdLTWgIR0BvUbdxhlUZdX2UKGgGR8BVyz2FnIyTaAdLV2gIR0BvU0e4kNWmdX2UKGgGR8BFPHR9gF5faAdLbGgIR0BvU57sv7FbdX2UKGgGR8BetHPJJXhgaAdLRGgIR0BvVRnlGPPtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29ea49f3187430fb374cce64e9b3964392264b457df0c9da67ede9e6723ecd24
|
3 |
+
size 146613
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c92584cec20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c92584cecb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c92584ced40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c92584cedd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c92584cee60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c92584ceef0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c92584cef80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c92584cf010>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c92584cf0a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c92584cf130>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c92584cf1c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c92584cf250>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c92584ca1c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 10000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690177218746604419,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZclD0SkIM/sjwlPtfFRr9MfOI9locWPAAAAAAAAAAAzYIwPIr2tj9CH9Q9GdHaOwxYAL3l13e9AAAAAAAAAADzCpQ9OpaoP4pphj5JHMO+zOJpPKqQ2j0AAAAAAAAAANp87r44lFg/OraLv/G0Ub+d7Ig/ywXbPgAAAAAAAAAAsxL8PbLmlT+igyw/UNI7v1vIib17h3c9AAAAAAAAAACQ8I8+obs2P4jMJz8lXnu/BpbSvuvb970AAAAAAAAAADPnID4X/zk/XlxrviakgL8DqxY/3McvPgAAAAAAAAAAZgh1POp8nj/gV909apoOv1GHEr3adtE8AAAAAAAAAADVdKW+DwoqPwKpV785FYK/0r7ZPuprPj4AAAAAAAAAAGZ5rzxbDhU/sicvu0E2gr/S8uA8a51ZvQAAAAAAAAAAkh1Bvw629T06dG6/h+Wtv9ZpfD51qFK+AAAAAAAAgD9A7vw9NxtYPwv/Tj6DAXu/if3bvaZTE7wAAAAAAAAAAHObGz6Ly8c/jrUHP2qBvbwa7Ee+lxOJvQAAAAAAAAAAwxVYvoFETD9OzTq/1IyHv1bz8z06s8U9AAAAAAAAAACtF2Q+/5lZP7zhDj9+r1m/Nr47vs2ToT0AAAAAAAAAAJrJxbz4+Ws/X1wBPjBIWL+75/O+XheCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.6384000000000001,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEpV9gF5fMSMAWyUS1GMAXSUR0Bu6iBTXJ5ndX2UKGgGR8BfMLOzIFNdaAdLYWgIR0Bu6+qPwNLEdX2UKGgGR8BaclUuL740aAdLVGgIR0Bu7CQtBfKIdX2UKGgGR8Bx59ZzPrv9aAdLgGgIR0Bu673IuGsWdX2UKGgGR8Bg6XNxEORUaAdLTGgIR0Bu7Dcwg1WKdX2UKGgGR0AbbLdN34bkaAdLYmgIR0Bu7TnoxHoYdX2UKGgGR8BctRpcophGaAdLWWgIR0Bu7qDZlFtsdX2UKGgGR8BceCNOuaF3aAdLY2gIR0Bu8KxNZeRgdX2UKGgGR8BckGrjo6jnaAdLR2gIR0Bu8scMmWt2dX2UKGgGR8BZaB02cawVaAdLQWgIR0Bu8umNzbN9dX2UKGgGR8BjsfdoFmnPaAdLSGgIR0Bu9GmaYu01dX2UKGgGR8BPjIEr5IpZaAdLhWgIR0Bu9SmO2iL3dX2UKGgGR8BTv0ojOcDsaAdLVmgIR0Bu9UH0K7ZndX2UKGgGR8Brfk1EVnEmaAdLQWgIR0Bu9bS1E3KkdX2UKGgGR8Bx1/gccU/OaAdLbWgIR0Bu9eJm/WUbdX2UKGgGR8A9m7GNrCWNaAdLXGgIR0Bu9pYDDCP7dX2UKGgGR8BYUkQPI4lyaAdLUmgIR0Bu+Av114gSdX2UKGgGRz/2lWjoIOYqaAdLiWgIR0Bu+TcRDkU9dX2UKGgGR8Bk9BnezlcRaAdLZWgIR0Bu+OEVWS2ZdX2UKGgGR8B6DB9Ujs2OaAdLYGgIR0Bu+em+CbtrdX2UKGgGR8BjmLIV/MGHaAdLO2gIR0Bu+zqjafz0dX2UKGgGR8BiaGnQ6ZH/aAdLQGgIR0Bu/A1aW5YpdX2UKGgGR8BumtHavicYaAdLaWgIR0Bu/Xk1dgOSdX2UKGgGR8B5+sONHYpVaAdLWWgIR0Bu/WWyC4BndX2UKGgGR8BWNmf9P1tgaAdLTWgIR0BvAFuDSPU8dX2UKGgGR8B2AxbjcVQAaAdLiGgIR0BvAMB2fTTfdX2UKGgGR8BfjF89fTkRaAdLTGgIR0BvAONFSbYsdX2UKGgGR8BcOi8OCoS+aAdLPmgIR0BvAxDXvphXdX2UKGgGR8BXLwLmZE2HaAdLOGgIR0BvA6qQzUI+dX2UKGgGR8Bd1HO4XoC/aAdLXWgIR0BvA161LJ0XdX2UKGgGR8BjhLpHI6sAaAdLTmgIR0BvBaKm8/UwdX2UKGgGR8BxmZdQfp2VaAdLbWgIR0BvBXHNorWidX2UKGgGR8BVhWf5DZ13aAdLp2gIR0BvBTiIcinpdX2UKGgGR8B0f928qWkaaAdLeGgIR0BvCQMH8jzJdX2UKGgGR8BYviJoCdSVaAdLdmgIR0BvCpLkCFK1dX2UKGgGR0A7JMvh60IDaAdLR2gIR0BvCull9SdfdX2UKGgGR8BWiXKGL1mKaAdLQGgIR0BvDgO6NEPUdX2UKGgGR8BdY118stkGaAdLgWgIR0BvD5uQ6p5vdX2UKGgGR8BlABbGFSKnaAdLeWgIR0BvD07EHdGidX2UKGgGR8BTxmyC4BmxaAdLXmgIR0BvEHsXzlLfdX2UKGgGR8Bc432M85jpaAdLPWgIR0BvE1YGMXJpdX2UKGgGR8BfBpiAlOXWaAdLWmgIR0BvFFq33HrAdX2UKGgGR8Beuq/RE4NraAdLWWgIR0BvFHJJXhfjdX2UKGgGR8Bp6AHeJpFkaAdLfGgIR0BvFP9xZMcqdX2UKGgGR8BwWQ5YHPeIaAdLUmgIR0BvFirT6SDAdX2UKGgGR8BV2Ka1Cw8oaAdLWWgIR0BvFyyyD7IldX2UKGgGR8B24897ngYQaAdLWGgIR0BvF7YmLLpzdX2UKGgGR8B4XrLPldTpaAdLZ2gIR0BvHFjbzshQdX2UKGgGR8BFbwH7gsK9aAdLQGgIR0BvHONkvsZ6dX2UKGgGR8BtYVjiGWUsaAdLZmgIR0BvHzPWxyGSdX2UKGgGR8BsfjsniNsFaAdLSmgIR0BvH/QID5j6dX2UKGgGR8Bwehj0+TvBaAdLe2gIR0BvH/nGKhtcdX2UKGgGR8BWKrrC3w1BaAdLOmgIR0BvIHw1BMSLdX2UKGgGR8BX+lA7gbZOaAdLX2gIR0BvI4lY2bXpdX2UKGgGR8BlIjohY/3WaAdLR2gIR0BvI40uUUwjdX2UKGgGR8Bx6BvCMxXXaAdLdmgIR0BvJClgtvn9dX2UKGgGR8BorY1R+BpYaAdLamgIR0BvJGh9LHuJdX2UKGgGR8BpeD544ZMtaAdLQmgIR0BvJTOxB3RpdX2UKGgGR8Be1z0xubZwaAdLfWgIR0BvJWBnSOR1dX2UKGgGR8BKpX6InBtUaAdLVWgIR0BvKFkz41xbdX2UKGgGR8BY4dfw7T2GaAdLaGgIR0BvKXiaRZEEdX2UKGgGR8BeFRqsU7CBaAdLdmgIR0BvK1wT/Q0GdX2UKGgGR8BgAJClabF1aAdLdGgIR0BvLfmPo3aSdX2UKGgGR8B2vkxM36yjaAdLUmgIR0BvLcQNCqp+dX2UKGgGR8Bw346CDmKZaAdLYWgIR0BvMCPIXCTEdX2UKGgGR8BzWkAo5PuYaAdLV2gIR0BvMQLThHbzdX2UKGgGR8B0eBLi++M7aAdLVGgIR0BvMb+o99tudX2UKGgGR8Bl1gz1schlaAdLRmgIR0BvMiyIHkcTdX2UKGgGR8BaWFyWAwwkaAdLQmgIR0BvMyT6i0v5dX2UKGgGR8BcGcXrMTviaAdLR2gIR0BvNBjawljWdX2UKGgGR8BhILVMEidKaAdLX2gIR0BvM7fk3juKdX2UKGgGR8BWm/Zdv864aAdLVGgIR0BvNaxZ+x4ZdX2UKGgGR8BeeeVX3g1naAdLaWgIR0BvNcBGQSzxdX2UKGgGR8BzQkaxX4j9aAdLWmgIR0BvNyb2Dg62dX2UKGgGR8BSFNKVY6n0aAdLTGgIR0BvOGLk0aZQdX2UKGgGR8B4xEtVaOghaAdLcGgIR0BvOqGpMpPRdX2UKGgGR8B570yULUkOaAdLVWgIR0BvO0AaNuLrdX2UKGgGR8BdLOjRD1GtaAdLUGgIR0BvPBG6PKdQdX2UKGgGR8BffJiy6cy4aAdLRWgIR0BvO+LP2PDHdX2UKGgGR8BNXfK6nR9gaAdLQWgIR0BvQEjs2NvPdX2UKGgGR8BUcJMURFqjaAdLQGgIR0BvQRMewLVndX2UKGgGR8BsmDbnHNoraAdLUWgIR0BvQQiRnvlVdX2UKGgGR8BvCfustCiRaAdLXmgIR0BvQXn2ZiNLdX2UKGgGR8Byltmwqy4XaAdLTWgIR0BvQbiQ1aW5dX2UKGgGR8Bhk0EA5q/NaAdLVmgIR0BvQ9eD3/PxdX2UKGgGR8B2BHJwKjSHaAdLT2gIR0BvRggeRxLkdX2UKGgGR8BoGP0ulGgBaAdLZWgIR0BvRjnoxHoYdX2UKGgGR8Bv9VzQu27WaAdLSmgIR0BvR+ICU5dXdX2UKGgGR8AlsKeCkGiYaAdLY2gIR0BvSECo0hvBdX2UKGgGR8BVZvexfOUuaAdLZmgIR0BvSxUFSsKcdX2UKGgGR8BcYNCZ4Oc2aAdLUmgIR0BvTBXOnl4kdX2UKGgGR8BXPMBIWgvlaAdLU2gIR0BvTPBguyu7dX2UKGgGR8BnfXPC2tuDaAdLaGgIR0BvTP3Hq/ucdX2UKGgGR8BePrTUiILxaAdLPGgIR0BvThGpda+wdX2UKGgGR8Bgp4pDu0CzaAdLW2gIR0BvT4jrzGxVdX2UKGgGR8Bf/NDUmUnpaAdLQmgIR0BvUAlhPTG6dX2UKGgGR8BYwI42jwhGaAdLTWgIR0BvUbdxhlUZdX2UKGgGR8BVyz2FnIyTaAdLV2gIR0BvU0e4kNWmdX2UKGgGR8BFPHR9gF5faAdLbGgIR0BvU57sv7FbdX2UKGgGR8BetHPJJXhgaAdLRGgIR0BvVRnlGPPtdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a0ee0f87aa1f06906a34d6fd014c3573206b6860327c43b2bffb7754b106cb6
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7e6ef797370e739f4165fe5f94a7c2ffc26e82d901192cee0c25bcfb114e07f
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (108 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -765.9083206759533, "std_reward": 483.9742341999585, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T05:47:05.615123"}
|