Ahsankhan123 commited on
Commit
2170956
1 Parent(s): 26d39c5

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -765.91 +/- 483.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c92584cec20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c92584cecb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c92584ced40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c92584cedd0>", "_build": "<function ActorCriticPolicy._build at 0x7c92584cee60>", "forward": "<function ActorCriticPolicy.forward at 0x7c92584ceef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c92584cef80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c92584cf010>", "_predict": "<function ActorCriticPolicy._predict at 0x7c92584cf0a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c92584cf130>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c92584cf1c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c92584cf250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c92584ca1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690177218746604419, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZclD0SkIM/sjwlPtfFRr9MfOI9locWPAAAAAAAAAAAzYIwPIr2tj9CH9Q9GdHaOwxYAL3l13e9AAAAAAAAAADzCpQ9OpaoP4pphj5JHMO+zOJpPKqQ2j0AAAAAAAAAANp87r44lFg/OraLv/G0Ub+d7Ig/ywXbPgAAAAAAAAAAsxL8PbLmlT+igyw/UNI7v1vIib17h3c9AAAAAAAAAACQ8I8+obs2P4jMJz8lXnu/BpbSvuvb970AAAAAAAAAADPnID4X/zk/XlxrviakgL8DqxY/3McvPgAAAAAAAAAAZgh1POp8nj/gV909apoOv1GHEr3adtE8AAAAAAAAAADVdKW+DwoqPwKpV785FYK/0r7ZPuprPj4AAAAAAAAAAGZ5rzxbDhU/sicvu0E2gr/S8uA8a51ZvQAAAAAAAAAAkh1Bvw629T06dG6/h+Wtv9ZpfD51qFK+AAAAAAAAgD9A7vw9NxtYPwv/Tj6DAXu/if3bvaZTE7wAAAAAAAAAAHObGz6Ly8c/jrUHP2qBvbwa7Ee+lxOJvQAAAAAAAAAAwxVYvoFETD9OzTq/1IyHv1bz8z06s8U9AAAAAAAAAACtF2Q+/5lZP7zhDj9+r1m/Nr47vs2ToT0AAAAAAAAAAJrJxbz4+Ws/X1wBPjBIWL+75/O+XheCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEpV9gF5fMSMAWyUS1GMAXSUR0Bu6iBTXJ5ndX2UKGgGR8BfMLOzIFNdaAdLYWgIR0Bu6+qPwNLEdX2UKGgGR8BaclUuL740aAdLVGgIR0Bu7CQtBfKIdX2UKGgGR8Bx59ZzPrv9aAdLgGgIR0Bu673IuGsWdX2UKGgGR8Bg6XNxEORUaAdLTGgIR0Bu7Dcwg1WKdX2UKGgGR0AbbLdN34bkaAdLYmgIR0Bu7TnoxHoYdX2UKGgGR8BctRpcophGaAdLWWgIR0Bu7qDZlFtsdX2UKGgGR8BceCNOuaF3aAdLY2gIR0Bu8KxNZeRgdX2UKGgGR8BckGrjo6jnaAdLR2gIR0Bu8scMmWt2dX2UKGgGR8BZaB02cawVaAdLQWgIR0Bu8umNzbN9dX2UKGgGR8BjsfdoFmnPaAdLSGgIR0Bu9GmaYu01dX2UKGgGR8BPjIEr5IpZaAdLhWgIR0Bu9SmO2iL3dX2UKGgGR8BTv0ojOcDsaAdLVmgIR0Bu9UH0K7ZndX2UKGgGR8Brfk1EVnEmaAdLQWgIR0Bu9bS1E3KkdX2UKGgGR8Bx1/gccU/OaAdLbWgIR0Bu9eJm/WUbdX2UKGgGR8A9m7GNrCWNaAdLXGgIR0Bu9pYDDCP7dX2UKGgGR8BYUkQPI4lyaAdLUmgIR0Bu+Av114gSdX2UKGgGRz/2lWjoIOYqaAdLiWgIR0Bu+TcRDkU9dX2UKGgGR8Bk9BnezlcRaAdLZWgIR0Bu+OEVWS2ZdX2UKGgGR8B6DB9Ujs2OaAdLYGgIR0Bu+em+CbtrdX2UKGgGR8BjmLIV/MGHaAdLO2gIR0Bu+zqjafz0dX2UKGgGR8BiaGnQ6ZH/aAdLQGgIR0Bu/A1aW5YpdX2UKGgGR8BumtHavicYaAdLaWgIR0Bu/Xk1dgOSdX2UKGgGR8B5+sONHYpVaAdLWWgIR0Bu/WWyC4BndX2UKGgGR8BWNmf9P1tgaAdLTWgIR0BvAFuDSPU8dX2UKGgGR8B2AxbjcVQAaAdLiGgIR0BvAMB2fTTfdX2UKGgGR8BfjF89fTkRaAdLTGgIR0BvAONFSbYsdX2UKGgGR8BcOi8OCoS+aAdLPmgIR0BvAxDXvphXdX2UKGgGR8BXLwLmZE2HaAdLOGgIR0BvA6qQzUI+dX2UKGgGR8Bd1HO4XoC/aAdLXWgIR0BvA161LJ0XdX2UKGgGR8BjhLpHI6sAaAdLTmgIR0BvBaKm8/UwdX2UKGgGR8BxmZdQfp2VaAdLbWgIR0BvBXHNorWidX2UKGgGR8BVhWf5DZ13aAdLp2gIR0BvBTiIcinpdX2UKGgGR8B0f928qWkaaAdLeGgIR0BvCQMH8jzJdX2UKGgGR8BYviJoCdSVaAdLdmgIR0BvCpLkCFK1dX2UKGgGR0A7JMvh60IDaAdLR2gIR0BvCull9SdfdX2UKGgGR8BWiXKGL1mKaAdLQGgIR0BvDgO6NEPUdX2UKGgGR8BdY118stkGaAdLgWgIR0BvD5uQ6p5vdX2UKGgGR8BlABbGFSKnaAdLeWgIR0BvD07EHdGidX2UKGgGR8BTxmyC4BmxaAdLXmgIR0BvEHsXzlLfdX2UKGgGR8Bc432M85jpaAdLPWgIR0BvE1YGMXJpdX2UKGgGR8BfBpiAlOXWaAdLWmgIR0BvFFq33HrAdX2UKGgGR8Beuq/RE4NraAdLWWgIR0BvFHJJXhfjdX2UKGgGR8Bp6AHeJpFkaAdLfGgIR0BvFP9xZMcqdX2UKGgGR8BwWQ5YHPeIaAdLUmgIR0BvFirT6SDAdX2UKGgGR8BV2Ka1Cw8oaAdLWWgIR0BvFyyyD7IldX2UKGgGR8B24897ngYQaAdLWGgIR0BvF7YmLLpzdX2UKGgGR8B4XrLPldTpaAdLZ2gIR0BvHFjbzshQdX2UKGgGR8BFbwH7gsK9aAdLQGgIR0BvHONkvsZ6dX2UKGgGR8BtYVjiGWUsaAdLZmgIR0BvHzPWxyGSdX2UKGgGR8BsfjsniNsFaAdLSmgIR0BvH/QID5j6dX2UKGgGR8Bwehj0+TvBaAdLe2gIR0BvH/nGKhtcdX2UKGgGR8BWKrrC3w1BaAdLOmgIR0BvIHw1BMSLdX2UKGgGR8BX+lA7gbZOaAdLX2gIR0BvI4lY2bXpdX2UKGgGR8BlIjohY/3WaAdLR2gIR0BvI40uUUwjdX2UKGgGR8Bx6BvCMxXXaAdLdmgIR0BvJClgtvn9dX2UKGgGR8BorY1R+BpYaAdLamgIR0BvJGh9LHuJdX2UKGgGR8BpeD544ZMtaAdLQmgIR0BvJTOxB3RpdX2UKGgGR8Be1z0xubZwaAdLfWgIR0BvJWBnSOR1dX2UKGgGR8BKpX6InBtUaAdLVWgIR0BvKFkz41xbdX2UKGgGR8BY4dfw7T2GaAdLaGgIR0BvKXiaRZEEdX2UKGgGR8BeFRqsU7CBaAdLdmgIR0BvK1wT/Q0GdX2UKGgGR8BgAJClabF1aAdLdGgIR0BvLfmPo3aSdX2UKGgGR8B2vkxM36yjaAdLUmgIR0BvLcQNCqp+dX2UKGgGR8Bw346CDmKZaAdLYWgIR0BvMCPIXCTEdX2UKGgGR8BzWkAo5PuYaAdLV2gIR0BvMQLThHbzdX2UKGgGR8B0eBLi++M7aAdLVGgIR0BvMb+o99tudX2UKGgGR8Bl1gz1schlaAdLRmgIR0BvMiyIHkcTdX2UKGgGR8BaWFyWAwwkaAdLQmgIR0BvMyT6i0v5dX2UKGgGR8BcGcXrMTviaAdLR2gIR0BvNBjawljWdX2UKGgGR8BhILVMEidKaAdLX2gIR0BvM7fk3juKdX2UKGgGR8BWm/Zdv864aAdLVGgIR0BvNaxZ+x4ZdX2UKGgGR8BeeeVX3g1naAdLaWgIR0BvNcBGQSzxdX2UKGgGR8BzQkaxX4j9aAdLWmgIR0BvNyb2Dg62dX2UKGgGR8BSFNKVY6n0aAdLTGgIR0BvOGLk0aZQdX2UKGgGR8B4xEtVaOghaAdLcGgIR0BvOqGpMpPRdX2UKGgGR8B570yULUkOaAdLVWgIR0BvO0AaNuLrdX2UKGgGR8BdLOjRD1GtaAdLUGgIR0BvPBG6PKdQdX2UKGgGR8BffJiy6cy4aAdLRWgIR0BvO+LP2PDHdX2UKGgGR8BNXfK6nR9gaAdLQWgIR0BvQEjs2NvPdX2UKGgGR8BUcJMURFqjaAdLQGgIR0BvQRMewLVndX2UKGgGR8BsmDbnHNoraAdLUWgIR0BvQQiRnvlVdX2UKGgGR8BvCfustCiRaAdLXmgIR0BvQXn2ZiNLdX2UKGgGR8Byltmwqy4XaAdLTWgIR0BvQbiQ1aW5dX2UKGgGR8Bhk0EA5q/NaAdLVmgIR0BvQ9eD3/PxdX2UKGgGR8B2BHJwKjSHaAdLT2gIR0BvRggeRxLkdX2UKGgGR8BoGP0ulGgBaAdLZWgIR0BvRjnoxHoYdX2UKGgGR8Bv9VzQu27WaAdLSmgIR0BvR+ICU5dXdX2UKGgGR8AlsKeCkGiYaAdLY2gIR0BvSECo0hvBdX2UKGgGR8BVZvexfOUuaAdLZmgIR0BvSxUFSsKcdX2UKGgGR8BcYNCZ4Oc2aAdLUmgIR0BvTBXOnl4kdX2UKGgGR8BXPMBIWgvlaAdLU2gIR0BvTPBguyu7dX2UKGgGR8BnfXPC2tuDaAdLaGgIR0BvTP3Hq/ucdX2UKGgGR8BePrTUiILxaAdLPGgIR0BvThGpda+wdX2UKGgGR8Bgp4pDu0CzaAdLW2gIR0BvT4jrzGxVdX2UKGgGR8Bf/NDUmUnpaAdLQmgIR0BvUAlhPTG6dX2UKGgGR8BYwI42jwhGaAdLTWgIR0BvUbdxhlUZdX2UKGgGR8BVyz2FnIyTaAdLV2gIR0BvU0e4kNWmdX2UKGgGR8BFPHR9gF5faAdLbGgIR0BvU57sv7FbdX2UKGgGR8BetHPJJXhgaAdLRGgIR0BvVRnlGPPtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29ea49f3187430fb374cce64e9b3964392264b457df0c9da67ede9e6723ecd24
3
+ size 146613
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c92584cec20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c92584cecb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c92584ced40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c92584cedd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c92584cee60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c92584ceef0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c92584cef80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c92584cf010>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c92584cf0a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c92584cf130>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c92584cf1c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c92584cf250>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c92584ca1c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 10000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690177218746604419,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZclD0SkIM/sjwlPtfFRr9MfOI9locWPAAAAAAAAAAAzYIwPIr2tj9CH9Q9GdHaOwxYAL3l13e9AAAAAAAAAADzCpQ9OpaoP4pphj5JHMO+zOJpPKqQ2j0AAAAAAAAAANp87r44lFg/OraLv/G0Ub+d7Ig/ywXbPgAAAAAAAAAAsxL8PbLmlT+igyw/UNI7v1vIib17h3c9AAAAAAAAAACQ8I8+obs2P4jMJz8lXnu/BpbSvuvb970AAAAAAAAAADPnID4X/zk/XlxrviakgL8DqxY/3McvPgAAAAAAAAAAZgh1POp8nj/gV909apoOv1GHEr3adtE8AAAAAAAAAADVdKW+DwoqPwKpV785FYK/0r7ZPuprPj4AAAAAAAAAAGZ5rzxbDhU/sicvu0E2gr/S8uA8a51ZvQAAAAAAAAAAkh1Bvw629T06dG6/h+Wtv9ZpfD51qFK+AAAAAAAAgD9A7vw9NxtYPwv/Tj6DAXu/if3bvaZTE7wAAAAAAAAAAHObGz6Ly8c/jrUHP2qBvbwa7Ee+lxOJvQAAAAAAAAAAwxVYvoFETD9OzTq/1IyHv1bz8z06s8U9AAAAAAAAAACtF2Q+/5lZP7zhDj9+r1m/Nr47vs2ToT0AAAAAAAAAAJrJxbz4+Ws/X1wBPjBIWL+75/O+XheCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.6384000000000001,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEpV9gF5fMSMAWyUS1GMAXSUR0Bu6iBTXJ5ndX2UKGgGR8BfMLOzIFNdaAdLYWgIR0Bu6+qPwNLEdX2UKGgGR8BaclUuL740aAdLVGgIR0Bu7CQtBfKIdX2UKGgGR8Bx59ZzPrv9aAdLgGgIR0Bu673IuGsWdX2UKGgGR8Bg6XNxEORUaAdLTGgIR0Bu7Dcwg1WKdX2UKGgGR0AbbLdN34bkaAdLYmgIR0Bu7TnoxHoYdX2UKGgGR8BctRpcophGaAdLWWgIR0Bu7qDZlFtsdX2UKGgGR8BceCNOuaF3aAdLY2gIR0Bu8KxNZeRgdX2UKGgGR8BckGrjo6jnaAdLR2gIR0Bu8scMmWt2dX2UKGgGR8BZaB02cawVaAdLQWgIR0Bu8umNzbN9dX2UKGgGR8BjsfdoFmnPaAdLSGgIR0Bu9GmaYu01dX2UKGgGR8BPjIEr5IpZaAdLhWgIR0Bu9SmO2iL3dX2UKGgGR8BTv0ojOcDsaAdLVmgIR0Bu9UH0K7ZndX2UKGgGR8Brfk1EVnEmaAdLQWgIR0Bu9bS1E3KkdX2UKGgGR8Bx1/gccU/OaAdLbWgIR0Bu9eJm/WUbdX2UKGgGR8A9m7GNrCWNaAdLXGgIR0Bu9pYDDCP7dX2UKGgGR8BYUkQPI4lyaAdLUmgIR0Bu+Av114gSdX2UKGgGRz/2lWjoIOYqaAdLiWgIR0Bu+TcRDkU9dX2UKGgGR8Bk9BnezlcRaAdLZWgIR0Bu+OEVWS2ZdX2UKGgGR8B6DB9Ujs2OaAdLYGgIR0Bu+em+CbtrdX2UKGgGR8BjmLIV/MGHaAdLO2gIR0Bu+zqjafz0dX2UKGgGR8BiaGnQ6ZH/aAdLQGgIR0Bu/A1aW5YpdX2UKGgGR8BumtHavicYaAdLaWgIR0Bu/Xk1dgOSdX2UKGgGR8B5+sONHYpVaAdLWWgIR0Bu/WWyC4BndX2UKGgGR8BWNmf9P1tgaAdLTWgIR0BvAFuDSPU8dX2UKGgGR8B2AxbjcVQAaAdLiGgIR0BvAMB2fTTfdX2UKGgGR8BfjF89fTkRaAdLTGgIR0BvAONFSbYsdX2UKGgGR8BcOi8OCoS+aAdLPmgIR0BvAxDXvphXdX2UKGgGR8BXLwLmZE2HaAdLOGgIR0BvA6qQzUI+dX2UKGgGR8Bd1HO4XoC/aAdLXWgIR0BvA161LJ0XdX2UKGgGR8BjhLpHI6sAaAdLTmgIR0BvBaKm8/UwdX2UKGgGR8BxmZdQfp2VaAdLbWgIR0BvBXHNorWidX2UKGgGR8BVhWf5DZ13aAdLp2gIR0BvBTiIcinpdX2UKGgGR8B0f928qWkaaAdLeGgIR0BvCQMH8jzJdX2UKGgGR8BYviJoCdSVaAdLdmgIR0BvCpLkCFK1dX2UKGgGR0A7JMvh60IDaAdLR2gIR0BvCull9SdfdX2UKGgGR8BWiXKGL1mKaAdLQGgIR0BvDgO6NEPUdX2UKGgGR8BdY118stkGaAdLgWgIR0BvD5uQ6p5vdX2UKGgGR8BlABbGFSKnaAdLeWgIR0BvD07EHdGidX2UKGgGR8BTxmyC4BmxaAdLXmgIR0BvEHsXzlLfdX2UKGgGR8Bc432M85jpaAdLPWgIR0BvE1YGMXJpdX2UKGgGR8BfBpiAlOXWaAdLWmgIR0BvFFq33HrAdX2UKGgGR8Beuq/RE4NraAdLWWgIR0BvFHJJXhfjdX2UKGgGR8Bp6AHeJpFkaAdLfGgIR0BvFP9xZMcqdX2UKGgGR8BwWQ5YHPeIaAdLUmgIR0BvFirT6SDAdX2UKGgGR8BV2Ka1Cw8oaAdLWWgIR0BvFyyyD7IldX2UKGgGR8B24897ngYQaAdLWGgIR0BvF7YmLLpzdX2UKGgGR8B4XrLPldTpaAdLZ2gIR0BvHFjbzshQdX2UKGgGR8BFbwH7gsK9aAdLQGgIR0BvHONkvsZ6dX2UKGgGR8BtYVjiGWUsaAdLZmgIR0BvHzPWxyGSdX2UKGgGR8BsfjsniNsFaAdLSmgIR0BvH/QID5j6dX2UKGgGR8Bwehj0+TvBaAdLe2gIR0BvH/nGKhtcdX2UKGgGR8BWKrrC3w1BaAdLOmgIR0BvIHw1BMSLdX2UKGgGR8BX+lA7gbZOaAdLX2gIR0BvI4lY2bXpdX2UKGgGR8BlIjohY/3WaAdLR2gIR0BvI40uUUwjdX2UKGgGR8Bx6BvCMxXXaAdLdmgIR0BvJClgtvn9dX2UKGgGR8BorY1R+BpYaAdLamgIR0BvJGh9LHuJdX2UKGgGR8BpeD544ZMtaAdLQmgIR0BvJTOxB3RpdX2UKGgGR8Be1z0xubZwaAdLfWgIR0BvJWBnSOR1dX2UKGgGR8BKpX6InBtUaAdLVWgIR0BvKFkz41xbdX2UKGgGR8BY4dfw7T2GaAdLaGgIR0BvKXiaRZEEdX2UKGgGR8BeFRqsU7CBaAdLdmgIR0BvK1wT/Q0GdX2UKGgGR8BgAJClabF1aAdLdGgIR0BvLfmPo3aSdX2UKGgGR8B2vkxM36yjaAdLUmgIR0BvLcQNCqp+dX2UKGgGR8Bw346CDmKZaAdLYWgIR0BvMCPIXCTEdX2UKGgGR8BzWkAo5PuYaAdLV2gIR0BvMQLThHbzdX2UKGgGR8B0eBLi++M7aAdLVGgIR0BvMb+o99tudX2UKGgGR8Bl1gz1schlaAdLRmgIR0BvMiyIHkcTdX2UKGgGR8BaWFyWAwwkaAdLQmgIR0BvMyT6i0v5dX2UKGgGR8BcGcXrMTviaAdLR2gIR0BvNBjawljWdX2UKGgGR8BhILVMEidKaAdLX2gIR0BvM7fk3juKdX2UKGgGR8BWm/Zdv864aAdLVGgIR0BvNaxZ+x4ZdX2UKGgGR8BeeeVX3g1naAdLaWgIR0BvNcBGQSzxdX2UKGgGR8BzQkaxX4j9aAdLWmgIR0BvNyb2Dg62dX2UKGgGR8BSFNKVY6n0aAdLTGgIR0BvOGLk0aZQdX2UKGgGR8B4xEtVaOghaAdLcGgIR0BvOqGpMpPRdX2UKGgGR8B570yULUkOaAdLVWgIR0BvO0AaNuLrdX2UKGgGR8BdLOjRD1GtaAdLUGgIR0BvPBG6PKdQdX2UKGgGR8BffJiy6cy4aAdLRWgIR0BvO+LP2PDHdX2UKGgGR8BNXfK6nR9gaAdLQWgIR0BvQEjs2NvPdX2UKGgGR8BUcJMURFqjaAdLQGgIR0BvQRMewLVndX2UKGgGR8BsmDbnHNoraAdLUWgIR0BvQQiRnvlVdX2UKGgGR8BvCfustCiRaAdLXmgIR0BvQXn2ZiNLdX2UKGgGR8Byltmwqy4XaAdLTWgIR0BvQbiQ1aW5dX2UKGgGR8Bhk0EA5q/NaAdLVmgIR0BvQ9eD3/PxdX2UKGgGR8B2BHJwKjSHaAdLT2gIR0BvRggeRxLkdX2UKGgGR8BoGP0ulGgBaAdLZWgIR0BvRjnoxHoYdX2UKGgGR8Bv9VzQu27WaAdLSmgIR0BvR+ICU5dXdX2UKGgGR8AlsKeCkGiYaAdLY2gIR0BvSECo0hvBdX2UKGgGR8BVZvexfOUuaAdLZmgIR0BvSxUFSsKcdX2UKGgGR8BcYNCZ4Oc2aAdLUmgIR0BvTBXOnl4kdX2UKGgGR8BXPMBIWgvlaAdLU2gIR0BvTPBguyu7dX2UKGgGR8BnfXPC2tuDaAdLaGgIR0BvTP3Hq/ucdX2UKGgGR8BePrTUiILxaAdLPGgIR0BvThGpda+wdX2UKGgGR8Bgp4pDu0CzaAdLW2gIR0BvT4jrzGxVdX2UKGgGR8Bf/NDUmUnpaAdLQmgIR0BvUAlhPTG6dX2UKGgGR8BYwI42jwhGaAdLTWgIR0BvUbdxhlUZdX2UKGgGR8BVyz2FnIyTaAdLV2gIR0BvU0e4kNWmdX2UKGgGR8BFPHR9gF5faAdLbGgIR0BvU57sv7FbdX2UKGgGR8BetHPJJXhgaAdLRGgIR0BvVRnlGPPtdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a0ee0f87aa1f06906a34d6fd014c3573206b6860327c43b2bffb7754b106cb6
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7e6ef797370e739f4165fe5f94a7c2ffc26e82d901192cee0c25bcfb114e07f
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (108 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -765.9083206759533, "std_reward": 483.9742341999585, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T05:47:05.615123"}