File size: 2,430 Bytes
3ba49f9
f9fa549
 
3ba49f9
 
f9fa549
 
3ba49f9
f9fa549
3ba49f9
38bf59d
3ba49f9
 
f9fa549
 
 
 
 
 
 
 
 
 
 
e762b30
 
 
 
3ba49f9
 
 
 
 
 
 
f9fa549
 
e23784b
 
 
e762b30
 
f9fa549
3ba49f9
 
 
44ac790
 
 
3ba49f9
 
 
91f33dc
 
ce83ed1
 
 
 
 
 
 
91f33dc
 
3ba49f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9fa549
3ba49f9
 
 
 
f9fa549
3ba49f9
f9fa549
3ba49f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
language:
- ba
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: wav2vec2-large-xls-r-300m-bashkir-cv7_opt
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: ba
    metrics:
       - name: Test WER
         type: wer
         value: 0.04440795062008041
       - name: Test СER
         type: сer
         value: 0.010491234992390509        
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-bashkir-cv7_opt

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BA dataset.
It achieves the following results on the evaluation set:
- Training Loss: 0.268400
- Validation Loss: 0.088252
- WER without LM: 0.085588
- WER with LM: 0.04440795062008041
- CER with LM: 0.010491234992390509


## Model description

Trained with this [jupiter notebook](https://drive.google.com/file/d/1KohDXZtKBWXVPZYlsLtqfxJGBzKmTtSh/view?usp=sharing)



## Intended uses & limitations

In order to reduce the number of characters, the following letters have been replaced or removed:

- 'я' -> 'йа'
- 'ю' -> 'йу'
- 'ё' -> 'йо'
- 'е' -> 'йэ' for first letter
- 'е' -> 'э' for other cases
- 'ъ' -> deleted
- 'ь' -> deleted

Therefore, in order to get the correct text, you need to do the reverse transformation and use the language model.

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 50
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.16.1
- Pytorch 1.10.0+cu113
- Datasets 1.18.2
- Tokenizers 0.10.3