|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast |
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import FluxLoraLoaderMixin |
|
from diffusers.models.autoencoders import AutoencoderKL |
|
from diffusers.models.transformers import FluxTransformer2DModel |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers.utils import load_image |
|
>>> from pipeline import FluxDifferentialImg2ImgPipeline |
|
|
|
>>> image = load_image( |
|
>>> "https://github.com/exx8/differential-diffusion/blob/main/assets/input.jpg?raw=true", |
|
>>> ) |
|
|
|
>>> mask = load_image( |
|
>>> "https://github.com/exx8/differential-diffusion/blob/main/assets/map.jpg?raw=true", |
|
>>> ) |
|
|
|
>>> pipe = FluxDifferentialImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) |
|
>>> pipe.enable_model_cpu_offload() |
|
|
|
>>> prompt = "painting of a mountain landscape with a meadow and a forest, meadow background, anime countryside landscape, anime nature wallpap, anime landscape wallpaper, studio ghibli landscape, anime landscape, mountain behind meadow, anime background art, studio ghibli environment, background of flowery hill, anime beautiful peace scene, forrest background, anime scenery, landscape background, background art, anime scenery concept art" |
|
>>> out = pipe( |
|
>>> prompt=prompt, |
|
>>> num_inference_steps=20, |
|
>>> guidance_scale=7.5, |
|
>>> image=image, |
|
>>> mask_image=mask, |
|
>>> strength=1.0, |
|
>>> ).images[0] |
|
|
|
>>> out.save("image.png") |
|
``` |
|
""" |
|
|
|
|
|
def calculate_shift( |
|
image_seq_len, |
|
base_seq_len: int = 256, |
|
max_seq_len: int = 4096, |
|
base_shift: float = 0.5, |
|
max_shift: float = 1.16, |
|
): |
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
b = base_shift - m * base_seq_len |
|
mu = image_seq_len * m + b |
|
return mu |
|
|
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class FluxDifferentialImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin): |
|
r""" |
|
Differential Image to Image pipeline for the Flux family of models. |
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ |
|
|
|
Args: |
|
transformer ([`FluxTransformer2DModel`]): |
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. |
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
text_encoder_2 ([`T5EncoderModel`]): |
|
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically |
|
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_2 (`T5TokenizerFast`): |
|
Second Tokenizer of class |
|
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" |
|
_optional_components = [] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder_2: T5EncoderModel, |
|
tokenizer_2: T5TokenizerFast, |
|
transformer: FluxTransformer2DModel, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = ( |
|
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 |
|
) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.mask_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, |
|
vae_latent_channels=self.vae.config.latent_channels, |
|
do_normalize=False, |
|
do_binarize=False, |
|
do_convert_grayscale=True, |
|
) |
|
self.tokenizer_max_length = ( |
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 |
|
) |
|
self.default_sample_size = 64 |
|
|
|
def _get_t5_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_images_per_prompt: int = 1, |
|
max_sequence_length: int = 512, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer_2( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
f" {max_sequence_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] |
|
|
|
dtype = self.text_encoder_2.dtype |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
return prompt_embeds |
|
|
|
def _get_clip_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]], |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
): |
|
device = device or self._execution_device |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer_max_length, |
|
truncation=True, |
|
return_overflowing_tokens=False, |
|
return_length=False, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer_max_length} tokens: {removed_text}" |
|
) |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) |
|
|
|
|
|
prompt_embeds = prompt_embeds.pooler_output |
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) |
|
|
|
return prompt_embeds |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_2: Union[str, List[str]], |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
max_sequence_length: int = 512, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in all text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if self.text_encoder is not None and USE_PEFT_BACKEND: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
if self.text_encoder_2 is not None and USE_PEFT_BACKEND: |
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
pooled_prompt_embeds = self._get_clip_prompt_embeds( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
) |
|
prompt_embeds = self._get_t5_prompt_embeds( |
|
prompt=prompt_2, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype |
|
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) |
|
text_ids = text_ids.repeat(num_images_per_prompt, 1, 1) |
|
|
|
return prompt_embeds, pooled_prompt_embeds, text_ids |
|
|
|
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): |
|
if isinstance(generator, list): |
|
image_latents = [ |
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
for i in range(image.shape[0]) |
|
] |
|
image_latents = torch.cat(image_latents, dim=0) |
|
else: |
|
image_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
|
return image_latents |
|
|
|
|
|
def get_timesteps(self, timesteps, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(num_inference_steps * strength, num_inference_steps) |
|
|
|
t_start = int(max(num_inference_steps - init_timestep, 0)) |
|
timesteps = timesteps[t_start * self.scheduler.order :] |
|
if hasattr(self.scheduler, "set_begin_index"): |
|
self.scheduler.set_begin_index(t_start * self.scheduler.order) |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
strength, |
|
height, |
|
width, |
|
prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
max_sequence_length=None, |
|
): |
|
if strength < 0 or strength > 1: |
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if max_sequence_length is not None and max_sequence_length > 512: |
|
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") |
|
|
|
@staticmethod |
|
def _prepare_latent_image_ids(batch_size, height, width, device, dtype): |
|
latent_image_ids = torch.zeros(height // 2, width // 2, 3) |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] |
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape |
|
|
|
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) |
|
latent_image_ids = latent_image_ids.reshape( |
|
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels |
|
) |
|
|
|
return latent_image_ids.to(device=device, dtype=dtype) |
|
|
|
@staticmethod |
|
def _pack_latents(latents, batch_size, num_channels_latents, height, width): |
|
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) |
|
latents = latents.permute(0, 2, 4, 1, 3, 5) |
|
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) |
|
|
|
return latents |
|
|
|
@staticmethod |
|
def _unpack_latents(latents, height, width, vae_scale_factor): |
|
batch_size, num_patches, channels = latents.shape |
|
|
|
height = height // vae_scale_factor |
|
width = width // vae_scale_factor |
|
|
|
latents = latents.view(batch_size, height, width, channels // 4, 2, 2) |
|
latents = latents.permute(0, 3, 1, 4, 2, 5) |
|
|
|
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) |
|
|
|
return latents |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
image=None, |
|
timestep=None, |
|
is_strength_max=None, |
|
): |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if (image is None or timestep is None) and not is_strength_max: |
|
raise ValueError( |
|
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." |
|
"However, either the image or the noise timestep has not been provided." |
|
) |
|
|
|
height = 2 * (int(height) // self.vae_scale_factor) |
|
width = 2 * (int(width) // self.vae_scale_factor) |
|
|
|
shape = (batch_size, num_channels_latents, height, width) |
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) |
|
|
|
|
|
if latents is None: |
|
image = image.to(device=device, dtype=dtype) |
|
image_latents = self._encode_vae_image(image=image, generator=generator) |
|
else: |
|
image_latents = latents |
|
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = noise if is_strength_max else self.scheduler.scale_noise(image_latents, timestep, noise) |
|
noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width) |
|
image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width) |
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) |
|
return latents, noise, image_latents, latent_image_ids |
|
|
|
def prepare_mask_latents( |
|
self, |
|
mask, |
|
masked_image, |
|
batch_size, |
|
num_images_per_prompt, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
): |
|
|
|
|
|
|
|
mask = torch.nn.functional.interpolate( |
|
mask, size=(2 * height // self.vae_scale_factor, 2 * width // self.vae_scale_factor) |
|
) |
|
mask = mask.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
masked_image = masked_image.to(device=device, dtype=dtype) |
|
|
|
if masked_image.shape[1] == 16: |
|
masked_image_latents = masked_image |
|
else: |
|
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) |
|
|
|
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
|
|
|
if mask.shape[0] < batch_size: |
|
if not batch_size % mask.shape[0] == 0: |
|
raise ValueError( |
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" |
|
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" |
|
" of masks that you pass is divisible by the total requested batch size." |
|
) |
|
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) |
|
if masked_image_latents.shape[0] < batch_size: |
|
if not batch_size % masked_image_latents.shape[0] == 0: |
|
raise ValueError( |
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated" |
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." |
|
" Make sure the number of images that you pass is divisible by the total requested batch size." |
|
) |
|
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) |
|
|
|
|
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) |
|
return mask, masked_image_latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def joint_attention_kwargs(self): |
|
return self._joint_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
image: PipelineImageInput = None, |
|
mask_image: PipelineImageInput = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
padding_mask_crop: Optional[int] = None, |
|
strength: float = 0.6, |
|
num_inference_steps: int = 28, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 7.0, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead |
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both |
|
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list |
|
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a |
|
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image |
|
latents as `image`, but if passing latents directly it is not encoded again. |
|
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask |
|
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a |
|
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one |
|
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B, |
|
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W, |
|
1)`, or `(H, W)`. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
padding_mask_crop (`int`, *optional*, defaults to `None`): |
|
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to |
|
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region |
|
with the same aspect ration of the image and contains all masked area, and then expand that area based |
|
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before |
|
resizing to the original image size for inpainting. This is useful when the masked area is small while |
|
the image is large and contain information irrelevant for inpainting, such as background. |
|
strength (`float`, *optional*, defaults to 1.0): |
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a |
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends |
|
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising |
|
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 |
|
essentially ignores `image`. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
images. |
|
""" |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
strength, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
is_strength_max = strength == 1.0 |
|
|
|
|
|
if padding_mask_crop is not None: |
|
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) |
|
resize_mode = "fill" |
|
else: |
|
crops_coords = None |
|
resize_mode = "default" |
|
|
|
original_image = image |
|
init_image = self.image_processor.preprocess( |
|
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode |
|
) |
|
init_image = init_image.to(dtype=torch.float32) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor) |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas, |
|
mu=mu, |
|
) |
|
timesteps, num_inference_steps = self.get_timesteps(timesteps, num_inference_steps, strength, device) |
|
|
|
if num_inference_steps < 1: |
|
raise ValueError( |
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" |
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." |
|
) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
|
|
latents, noise, original_image_latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
init_image, |
|
latent_timestep, |
|
is_strength_max, |
|
) |
|
|
|
|
|
original_mask = self.mask_processor.preprocess( |
|
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords |
|
) |
|
|
|
masked_image = init_image * original_mask |
|
original_mask, _ = self.prepare_mask_latents( |
|
original_mask, |
|
masked_image, |
|
batch_size, |
|
num_images_per_prompt, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
|
|
mask_thresholds = torch.arange(num_inference_steps, dtype=original_mask.dtype) / num_inference_steps |
|
mask_thresholds = mask_thresholds.unsqueeze(1).unsqueeze(1).to(device) |
|
masks = (original_mask > mask_thresholds) |
|
masks = self._pack_latents( |
|
masks.repeat(num_channels_latents, 1, 1, 1).permute(1, 0, 2, 3), |
|
len(mask_thresholds), |
|
num_channels_latents, |
|
2 * (int(height) // self.vae_scale_factor), |
|
2 * (int(width) // self.vae_scale_factor), |
|
) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
|
|
image_latent = original_image_latents |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
timestep = t.expand(latents.shape[0]).to(latents_dtype) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.tensor([guidance_scale], device=device) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
|
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if i < len(timesteps) - 1: |
|
noise_timestep = timesteps[i + 1] |
|
image_latent = self.scheduler.scale_noise( |
|
original_image_latents, torch.tensor([noise_timestep]), noise |
|
) |
|
|
|
|
|
mask = masks[i].to(latents_dtype) |
|
latents = image_latent * mask + latents * (1 - mask) |
|
|
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
if callback_outputs is not None: |
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
|
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|