AlekseyKorshuk
commited on
Commit
•
2123747
1
Parent(s):
784b21e
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: dalio-all-io-1.3b-2-epoch
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# dalio-all-io-1.3b-2-epoch
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.2949
|
20 |
+
- Accuracy: 0.0576
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 3e-05
|
40 |
+
- train_batch_size: 2
|
41 |
+
- eval_batch_size: 2
|
42 |
+
- seed: 42
|
43 |
+
- distributed_type: multi-GPU
|
44 |
+
- num_devices: 8
|
45 |
+
- total_train_batch_size: 16
|
46 |
+
- total_eval_batch_size: 16
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- num_epochs: 2.0
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 2.6543 | 0.03 | 1 | 2.6113 | 0.0513 |
|
56 |
+
| 2.6077 | 0.07 | 2 | 2.6113 | 0.0513 |
|
57 |
+
| 2.5964 | 0.1 | 3 | 2.5605 | 0.0519 |
|
58 |
+
| 2.7302 | 0.14 | 4 | 2.5234 | 0.0527 |
|
59 |
+
| 2.7002 | 0.17 | 5 | 2.5078 | 0.0529 |
|
60 |
+
| 2.5674 | 0.21 | 6 | 2.4941 | 0.0533 |
|
61 |
+
| 2.6399 | 0.24 | 7 | 2.4883 | 0.0534 |
|
62 |
+
| 2.533 | 0.28 | 8 | 2.4805 | 0.0536 |
|
63 |
+
| 2.7202 | 0.31 | 9 | 2.4746 | 0.0536 |
|
64 |
+
| 2.5137 | 0.34 | 10 | 2.4648 | 0.0534 |
|
65 |
+
| 2.499 | 0.38 | 11 | 2.4512 | 0.0536 |
|
66 |
+
| 2.7026 | 0.41 | 12 | 2.4414 | 0.0539 |
|
67 |
+
| 2.5254 | 0.45 | 13 | 2.4336 | 0.0543 |
|
68 |
+
| 2.5667 | 0.48 | 14 | 2.4238 | 0.0545 |
|
69 |
+
| 2.5715 | 0.52 | 15 | 2.4160 | 0.0548 |
|
70 |
+
| 2.3739 | 0.55 | 16 | 2.4102 | 0.0550 |
|
71 |
+
| 2.4756 | 0.59 | 17 | 2.4043 | 0.0549 |
|
72 |
+
| 2.4783 | 0.62 | 18 | 2.3984 | 0.0550 |
|
73 |
+
| 2.5665 | 0.66 | 19 | 2.3906 | 0.0549 |
|
74 |
+
| 2.4888 | 0.69 | 20 | 2.3906 | 0.0549 |
|
75 |
+
| 2.4476 | 0.72 | 21 | 2.3828 | 0.0550 |
|
76 |
+
| 2.604 | 0.76 | 22 | 2.375 | 0.0552 |
|
77 |
+
| 2.3416 | 0.79 | 23 | 2.3652 | 0.0554 |
|
78 |
+
| 2.6028 | 0.83 | 24 | 2.3555 | 0.0555 |
|
79 |
+
| 2.3425 | 0.86 | 25 | 2.3477 | 0.0558 |
|
80 |
+
| 2.4142 | 0.9 | 26 | 2.3398 | 0.0558 |
|
81 |
+
| 2.5317 | 0.93 | 27 | 2.3340 | 0.0559 |
|
82 |
+
| 2.4119 | 0.97 | 28 | 2.3301 | 0.0561 |
|
83 |
+
| 2.4048 | 1.0 | 29 | 2.3262 | 0.0563 |
|
84 |
+
| 1.9646 | 1.03 | 30 | 2.3242 | 0.0564 |
|
85 |
+
| 1.9233 | 1.07 | 31 | 2.3203 | 0.0563 |
|
86 |
+
| 1.9276 | 1.1 | 32 | 2.3203 | 0.0564 |
|
87 |
+
| 1.8702 | 1.14 | 33 | 2.3281 | 0.0565 |
|
88 |
+
| 2.0997 | 1.17 | 34 | 2.3340 | 0.0565 |
|
89 |
+
| 1.7943 | 1.21 | 35 | 2.3320 | 0.0568 |
|
90 |
+
| 1.8579 | 1.24 | 36 | 2.3242 | 0.0567 |
|
91 |
+
| 1.8844 | 1.28 | 37 | 2.3145 | 0.0568 |
|
92 |
+
| 1.9288 | 1.31 | 38 | 2.3086 | 0.0569 |
|
93 |
+
| 1.6616 | 1.34 | 39 | 2.3047 | 0.0570 |
|
94 |
+
| 1.6443 | 1.38 | 40 | 2.3047 | 0.0571 |
|
95 |
+
| 1.7616 | 1.41 | 41 | 2.3027 | 0.0572 |
|
96 |
+
| 1.7904 | 1.45 | 42 | 2.3027 | 0.0571 |
|
97 |
+
| 1.8762 | 1.48 | 43 | 2.3027 | 0.0573 |
|
98 |
+
| 1.6569 | 1.52 | 44 | 2.3027 | 0.0573 |
|
99 |
+
| 1.647 | 1.55 | 45 | 2.3027 | 0.0573 |
|
100 |
+
| 1.8168 | 1.59 | 46 | 2.3027 | 0.0574 |
|
101 |
+
| 1.7194 | 1.62 | 47 | 2.3027 | 0.0573 |
|
102 |
+
| 1.7667 | 1.66 | 48 | 2.3027 | 0.0572 |
|
103 |
+
| 1.7621 | 1.69 | 49 | 2.3027 | 0.0573 |
|
104 |
+
| 1.7269 | 1.72 | 50 | 2.3008 | 0.0573 |
|
105 |
+
| 1.7815 | 1.76 | 51 | 2.3008 | 0.0574 |
|
106 |
+
| 1.8318 | 1.79 | 52 | 2.2988 | 0.0574 |
|
107 |
+
| 1.9366 | 1.83 | 53 | 2.2988 | 0.0575 |
|
108 |
+
| 1.736 | 1.86 | 54 | 2.2969 | 0.0576 |
|
109 |
+
| 1.9984 | 1.9 | 55 | 2.2969 | 0.0575 |
|
110 |
+
| 1.7203 | 1.93 | 56 | 2.2949 | 0.0575 |
|
111 |
+
| 1.7391 | 1.97 | 57 | 2.2949 | 0.0576 |
|
112 |
+
| 1.6611 | 2.0 | 58 | 2.2949 | 0.0576 |
|
113 |
+
|
114 |
+
|
115 |
+
### Framework versions
|
116 |
+
|
117 |
+
- Transformers 4.25.0.dev0
|
118 |
+
- Pytorch 1.12.1+cu113
|
119 |
+
- Datasets 2.3.2
|
120 |
+
- Tokenizers 0.12.1
|