Clasificador de imagenes para saber que grado de demencia existe en la persona
Browse files- README.md +21 -2
- all_results.json +9 -9
- eval_results.json +5 -5
- train_results.json +4 -4
README.md
CHANGED
@@ -2,12 +2,28 @@
|
|
2 |
license: apache-2.0
|
3 |
base_model: microsoft/resnet-50
|
4 |
tags:
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- imagefolder
|
|
|
|
|
8 |
model-index:
|
9 |
- name: model-Dementia-classification-Alejandro-Arroyo
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -15,7 +31,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# model-Dementia-classification-Alejandro-Arroyo
|
17 |
|
18 |
-
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the
|
|
|
|
|
|
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: microsoft/resnet-50
|
4 |
tags:
|
5 |
+
- image-classification
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
model-index:
|
12 |
- name: model-Dementia-classification-Alejandro-Arroyo
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: RiniPL/Dementia_Dataset
|
19 |
+
type: imagefolder
|
20 |
+
config: default
|
21 |
+
split: validation
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.9230769230769231
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
# model-Dementia-classification-Alejandro-Arroyo
|
33 |
|
34 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the RiniPL/Dementia_Dataset dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.1858
|
37 |
+
- Accuracy: 0.9231
|
38 |
|
39 |
## Model description
|
40 |
|
all_results.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss": 0.
|
5 |
-
"eval_runtime": 1.
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second": 7.
|
8 |
"total_flos": 1.007413922930688e+17,
|
9 |
-
"train_loss": 0.
|
10 |
-
"train_runtime":
|
11 |
-
"train_samples_per_second": 24.
|
12 |
-
"train_steps_per_second": 3.
|
13 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"eval_accuracy": 0.9230769230769231,
|
4 |
+
"eval_loss": 0.18579737842082977,
|
5 |
+
"eval_runtime": 1.1471,
|
6 |
+
"eval_samples_per_second": 56.665,
|
7 |
+
"eval_steps_per_second": 7.846,
|
8 |
"total_flos": 1.007413922930688e+17,
|
9 |
+
"train_loss": 0.5491177876790364,
|
10 |
+
"train_runtime": 52.8429,
|
11 |
+
"train_samples_per_second": 24.601,
|
12 |
+
"train_steps_per_second": 3.406
|
13 |
}
|
eval_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss": 0.
|
5 |
-
"eval_runtime": 1.
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second": 7.
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"eval_accuracy": 0.9230769230769231,
|
4 |
+
"eval_loss": 0.18579737842082977,
|
5 |
+
"eval_runtime": 1.1471,
|
6 |
+
"eval_samples_per_second": 56.665,
|
7 |
+
"eval_steps_per_second": 7.846
|
8 |
}
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
"total_flos": 1.007413922930688e+17,
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second": 24.
|
7 |
-
"train_steps_per_second": 3.
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
"total_flos": 1.007413922930688e+17,
|
4 |
+
"train_loss": 0.5491177876790364,
|
5 |
+
"train_runtime": 52.8429,
|
6 |
+
"train_samples_per_second": 24.601,
|
7 |
+
"train_steps_per_second": 3.406
|
8 |
}
|