--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy widget: - src: https://huggingface.co/Alex14005/model-Dementia-classification-Alejandro-Arroyo/raw/main/Mild-demented.jpg example_title: Mild Demented - src: https://huggingface.co/Alex14005/model-Dementia-classification-Alejandro-Arroyo/raw/main/No-demented.jpg example_tittle: No Demented model-index: - name: model-Dementia-classification-Alejandro-Arroyo results: - task: name: Image Classification type: image-classification dataset: name: RiniPL/Dementia_Dataset type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9230769230769231 --- # model-Dementia-classification-Alejandro-Arroyo This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the RiniPL/Dementia_Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1858 - Accuracy: 0.9231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3