File size: 9,732 Bytes
0bc439d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91d53d9
0bc439d
91d53d9
 
 
 
 
 
 
 
 
 
0bc439d
 
 
 
 
 
91d53d9
0bc439d
 
 
 
 
 
 
91d53d9
0bc439d
 
 
91d53d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc439d
91d53d9
 
 
 
 
 
 
 
0bc439d
91d53d9
0bc439d
 
91d53d9
0bc439d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from typing import Optional, Union

import numpy as np
import torch
import transformers

from .ultravox_config import UltravoxConfig


class UltravoxProcessor(transformers.ProcessorMixin):
    """
    Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.

    Args:
        audio_processor: The audio processor for the audio encoder.
        tokenizer: The tokenizer for the language model.
    """

    attributes = ["audio_processor", "tokenizer"]
    audio_processor_class = (
        "Wav2Vec2Processor",
        "SeamlessM4TFeatureExtractor",
        "WhisperProcessor",
    )
    tokenizer_class = (
        "PreTrainedTokenizer",
        "PreTrainedTokenizerFast",
    )

    tokenizer: transformers.PreTrainedTokenizerBase
    audio_processor: transformers.ProcessorMixin

    def __init__(
        self,
        audio_processor=None,
        tokenizer=None,
        audio_padding: str = "longest",
        encoder_ds_factor: int = 320,
        stack_factor: int = 8,
        audio_placeholder: str = "<|audio|>",
    ):
        """
        Args:
            audio_processor: The audio processor for the audio encoder.
            tokenizer: The tokenizer for the language model.
            audio_padding: The padding strategy for the audio encoder.
            encoder_ds_factor: The downsample factor of the audio encoder.
            stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
            audio_placeholder: The placeholder for the audio in the text.
        """
        self.audio_padding = audio_padding
        self.encoder_ds_factor = encoder_ds_factor
        self.stack_factor = stack_factor
        self.audio_placeholder = audio_placeholder
        self.audio_token_replacement = tokenizer.eos_token
        assert (
            self.audio_token_replacement is not None
        ), "The tokenizer has no EOS token. Cannot recover."
        if tokenizer.pad_token_id is None:
            tokenizer.pad_token_id = tokenizer.eos_token_id

        super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
        config: UltravoxConfig = transformers.AutoConfig.from_pretrained(
            pretrained_model_name_or_path, **kwargs
        )
        audio_processor = transformers.AutoProcessor.from_pretrained(
            config.audio_model_id
            or config.audio_config._name_or_path
            or "facebook/wav2vec2-base-960h"
        )

        tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained_model_name_or_path, **kwargs
        )
        tokenizer.padding_side = "left"
        tokenizer.pad_token = tokenizer.eos_token

        return cls(
            audio_processor=audio_processor,
            tokenizer=tokenizer,
            stack_factor=config.stack_factor,
        )

    def __call__(
        self,
        text: Optional[str] = None,
        audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
        sampling_rate: Optional[int] = None,
        return_tensors: Optional[
            Union[str, transformers.TensorType]
        ] = transformers.TensorType.PYTORCH,
        **kwargs,
    ) -> transformers.BatchFeature:
        """
        Main method to prepare for the model one text sequence and audio. This method forwards the `text`
        and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
        audio processor's [`~Wav2Vec2Processor.__call__`] if `audio` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`):
                The sequence to be encoded. Sequence can be a string or (pretokenized string).
            audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The audio to be prepared. Audio can be NumPy array or PyTorch tensor. In case of a
                NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the
                sample length of the audio.
            sampling_rate (`int`, *optional*, defaults to 16000):
                Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
                you are doing.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
            - **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
              Returned when `audio` is not `None`.
            - **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
        """
        # TODO: Add support for multiple audio and text inputs.
        data = {}
        audio_embed_frames = 0
        if audio is not None and len(audio) > 0:
            if self.audio_padding == "max_length":
                # 30 seconds is the expected length for Whisper
                assert sampling_rate is not None, "Sampling rate must be provided."
                max_audio_len = 30 * sampling_rate
            else:
                max_audio_len = max([len(a) for a in audio])
            
            data["audio_token_len"] = []
            for a in audio:
                # It's guaranteed that the number of frames is less than or equal to this amount.
                # For Whisper this is exact AFAICT, but for Wav2Vec2 it's an upper bound.
                # Currently, StackAudioFrames makes sure an over-estimation won't cause issues by padding the audio embeddings.
                nb_encoder_frames = int(round(min(len(a), max_audio_len)/ self.encoder_ds_factor + 1e-4))
                audio_embed_frames = int(np.ceil(nb_encoder_frames / self.stack_factor))
                data["audio_token_len"].append(audio_embed_frames)

            # Main audio processing. The processor is model-specific.
            x = self.audio_processor(
                audio,
                sampling_rate=sampling_rate,
                padding="longest",
                max_length=max_audio_len,
                return_attention_mask=True,
                **kwargs,
            )
            if "input_features" in x:
                data["audio_values"] = x.input_features
            else:
                data["audio_values"] = x.input_values
            data["audio_len"] = x.attention_mask.sum(-1) - 1

        if text is not None:
            assert isinstance(
                text, list
            ), "Text must be a list."
            processed_text = []
            for t in text:
                if self.audio_placeholder in t:
                    if "audio_token_len" not in data:
                        raise ValueError(
                            f"audio must be provided when using audio placeholder ({self.audio_placeholder}) in text."
                        )

                    start_idx = len(
                        self.tokenizer.encode(
                            t[: text.t(self.audio_placeholder)],
                            add_special_tokens=False,
                        )
                    )
                    data["audio_token_start_idx"] = [start_idx]

                    # Replace the audio placeholder with the audio token.
                    #   e.g. "Transcribe\n<|audio|>" -> "Transcribe </s></s></s></s></s></s></s></s>"
                    #        where the number of </s> is the number of audio frames.
                    t = t.replace(
                        self.audio_placeholder,
                        self.audio_token_replacement * audio_embed_frames,
                    )
                    processed_text.append(t)

            # Special tokens like BOS should already have been added by the caller.
            data.update(self.tokenizer(processed_text, add_special_tokens=False, **kwargs))

        return transformers.BatchFeature(data=data, tensor_type=return_tensors)

    def batch_decode(self, *args, **kwargs):
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        audio_processor_input_names = self.audio_processor.model_input_names
        return list(set(tokenizer_input_names + audio_processor_input_names))


UltravoxProcessor.register_for_auto_class()

transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor)