AlexN commited on
Commit
1d509dc
1 Parent(s): 670b882

commit with good tokenizer

Browse files
Files changed (37) hide show
  1. README.md +103 -0
  2. added_tokens.json +1 -0
  3. all_results.json +14 -0
  4. config.json +107 -0
  5. eval.py +153 -0
  6. eval_results.json +9 -0
  7. preprocessor_config.json +9 -0
  8. pytorch_model.bin +3 -0
  9. run.sh +41 -0
  10. run_speech_recognition_ctc.py +748 -0
  11. special_tokens_map.json +1 -0
  12. tokenizer_config.json +1 -0
  13. train_results.json +8 -0
  14. trainer_state.json +1096 -0
  15. training_args.bin +3 -0
  16. vocab.json +1 -0
  17. wandb/debug-internal.log +1 -0
  18. wandb/debug.log +1 -0
  19. wandb/latest-run +1 -0
  20. wandb/run-20220129_131141-h6nhqm30/files/conda-environment.yaml +0 -0
  21. wandb/run-20220129_131141-h6nhqm30/files/config.yaml +0 -0
  22. wandb/run-20220129_131141-h6nhqm30/files/output.log +9003 -0
  23. wandb/run-20220129_131141-h6nhqm30/files/requirements.txt +180 -0
  24. wandb/run-20220129_131141-h6nhqm30/files/wandb-metadata.json +64 -0
  25. wandb/run-20220129_131141-h6nhqm30/files/wandb-summary.json +0 -0
  26. wandb/run-20220129_131141-h6nhqm30/logs/debug-internal.log +0 -0
  27. wandb/run-20220129_131141-h6nhqm30/logs/debug.log +24 -0
  28. wandb/run-20220129_131141-h6nhqm30/run-h6nhqm30.wandb +3 -0
  29. wandb/run-20220129_215451-1vipdbow/files/conda-environment.yaml +0 -0
  30. wandb/run-20220129_215451-1vipdbow/files/config.yaml +0 -0
  31. wandb/run-20220129_215451-1vipdbow/files/output.log +0 -0
  32. wandb/run-20220129_215451-1vipdbow/files/requirements.txt +180 -0
  33. wandb/run-20220129_215451-1vipdbow/files/wandb-metadata.json +65 -0
  34. wandb/run-20220129_215451-1vipdbow/files/wandb-summary.json +0 -0
  35. wandb/run-20220129_215451-1vipdbow/logs/debug-internal.log +0 -0
  36. wandb/run-20220129_215451-1vipdbow/logs/debug.log +24 -0
  37. wandb/run-20220129_215451-1vipdbow/run-1vipdbow.wandb +3 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - fr
4
+ license: apache-2.0
5
+ tags:
6
+ - automatic-speech-recognition
7
+ - mozilla-foundation/common_voice_8_0
8
+ - generated_from_trainer
9
+ - robust-speech-event
10
+ datasets:
11
+ - common_voice
12
+ model-index:
13
+ - name: xls-r-300m-fr
14
+ results:
15
+ - task:
16
+ name: Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice 8.0 fr
20
+ type: mozilla-foundation/common_voice_8_0
21
+ args: fr
22
+ metrics:
23
+ - name: Test WER
24
+ type: wer
25
+ value: 36.81
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ #
32
+
33
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.2388
36
+ - Wer: 0.3681
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0001
56
+ - train_batch_size: 64
57
+ - eval_batch_size: 64
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_steps: 1500
62
+ - num_epochs: 2.0
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
69
+ | 4.3748 | 0.07 | 500 | 3.8784 | 1.0 |
70
+ | 2.8068 | 0.14 | 1000 | 2.8289 | 0.9826 |
71
+ | 1.6698 | 0.22 | 1500 | 0.8811 | 0.7127 |
72
+ | 1.3488 | 0.29 | 2000 | 0.5166 | 0.5369 |
73
+ | 1.2239 | 0.36 | 2500 | 0.4105 | 0.4741 |
74
+ | 1.1537 | 0.43 | 3000 | 0.3585 | 0.4448 |
75
+ | 1.1184 | 0.51 | 3500 | 0.3336 | 0.4292 |
76
+ | 1.0968 | 0.58 | 4000 | 0.3195 | 0.4180 |
77
+ | 1.0737 | 0.65 | 4500 | 0.3075 | 0.4141 |
78
+ | 1.0677 | 0.72 | 5000 | 0.3015 | 0.4089 |
79
+ | 1.0462 | 0.8 | 5500 | 0.2971 | 0.4077 |
80
+ | 1.0392 | 0.87 | 6000 | 0.2870 | 0.3997 |
81
+ | 1.0178 | 0.94 | 6500 | 0.2805 | 0.3963 |
82
+ | 0.992 | 1.01 | 7000 | 0.2748 | 0.3935 |
83
+ | 1.0197 | 1.09 | 7500 | 0.2691 | 0.3884 |
84
+ | 1.0056 | 1.16 | 8000 | 0.2682 | 0.3889 |
85
+ | 0.9826 | 1.23 | 8500 | 0.2647 | 0.3868 |
86
+ | 0.9815 | 1.3 | 9000 | 0.2603 | 0.3832 |
87
+ | 0.9717 | 1.37 | 9500 | 0.2561 | 0.3807 |
88
+ | 0.9605 | 1.45 | 10000 | 0.2523 | 0.3783 |
89
+ | 0.96 | 1.52 | 10500 | 0.2494 | 0.3788 |
90
+ | 0.9442 | 1.59 | 11000 | 0.2478 | 0.3760 |
91
+ | 0.9564 | 1.66 | 11500 | 0.2454 | 0.3733 |
92
+ | 0.9436 | 1.74 | 12000 | 0.2439 | 0.3747 |
93
+ | 0.938 | 1.81 | 12500 | 0.2411 | 0.3716 |
94
+ | 0.9353 | 1.88 | 13000 | 0.2397 | 0.3698 |
95
+ | 0.9271 | 1.95 | 13500 | 0.2388 | 0.3681 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.17.0.dev0
101
+ - Pytorch 1.10.2+cu102
102
+ - Datasets 1.18.2.dev0
103
+ - Tokenizers 0.11.0
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "eval_loss": 0.23875188827514648,
4
+ "eval_runtime": 294.1776,
5
+ "eval_samples": 5792,
6
+ "eval_samples_per_second": 19.689,
7
+ "eval_steps_per_second": 0.309,
8
+ "eval_wer": 0.3680797679950471,
9
+ "train_loss": 1.442369053426242,
10
+ "train_runtime": 53680.5392,
11
+ "train_samples": 442265,
12
+ "train_samples_per_second": 16.478,
13
+ "train_steps_per_second": 0.257
14
+ }
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-300m",
3
+ "activation_dropout": 0.05,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.0,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.0,
57
+ "hidden_size": 1024,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 4096,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.0,
62
+ "mask_feature_length": 10,
63
+ "mask_feature_min_masks": 0,
64
+ "mask_feature_prob": 0.4,
65
+ "mask_time_length": 10,
66
+ "mask_time_min_masks": 2,
67
+ "mask_time_prob": 0.75,
68
+ "model_type": "wav2vec2",
69
+ "num_adapter_layers": 3,
70
+ "num_attention_heads": 16,
71
+ "num_codevector_groups": 2,
72
+ "num_codevectors_per_group": 320,
73
+ "num_conv_pos_embedding_groups": 16,
74
+ "num_conv_pos_embeddings": 128,
75
+ "num_feat_extract_layers": 7,
76
+ "num_hidden_layers": 24,
77
+ "num_negatives": 100,
78
+ "output_hidden_size": 1024,
79
+ "pad_token_id": 216,
80
+ "proj_codevector_dim": 768,
81
+ "tdnn_dilation": [
82
+ 1,
83
+ 2,
84
+ 3,
85
+ 1,
86
+ 1
87
+ ],
88
+ "tdnn_dim": [
89
+ 512,
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 1500
94
+ ],
95
+ "tdnn_kernel": [
96
+ 5,
97
+ 3,
98
+ 3,
99
+ 1,
100
+ 1
101
+ ],
102
+ "torch_dtype": "float32",
103
+ "transformers_version": "4.17.0.dev0",
104
+ "use_weighted_layer_sum": false,
105
+ "vocab_size": 218,
106
+ "xvector_output_dim": 512
107
+ }
eval.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import re
4
+ import unicodedata
5
+ from typing import Dict
6
+
7
+ import torch
8
+ from datasets import Audio, Dataset, load_dataset, load_metric
9
+
10
+ from transformers import AutoFeatureExtractor, pipeline
11
+
12
+
13
+ def log_results(result: Dataset, args: Dict[str, str]):
14
+ """DO NOT CHANGE. This function computes and logs the result metrics."""
15
+
16
+ log_outputs = args.log_outputs
17
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
18
+
19
+ # load metric
20
+ wer = load_metric("wer")
21
+ cer = load_metric("cer")
22
+
23
+ # compute metrics
24
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
25
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
26
+
27
+ # print & log results
28
+ result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
29
+ print(result_str)
30
+
31
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
32
+ f.write(result_str)
33
+
34
+ # log all results in text file. Possibly interesting for analysis
35
+ if log_outputs is not None:
36
+ pred_file = f"log_{dataset_id}_predictions.txt"
37
+ target_file = f"log_{dataset_id}_targets.txt"
38
+
39
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
40
+
41
+ # mapping function to write output
42
+ def write_to_file(batch, i):
43
+ p.write(f"{i}" + "\n")
44
+ p.write(batch["prediction"] + "\n")
45
+ t.write(f"{i}" + "\n")
46
+ t.write(batch["target"] + "\n")
47
+
48
+ result.map(write_to_file, with_indices=True)
49
+
50
+
51
+ chars_to_remove_regex = r'[\,\?\.\!\-\_\;\:\"\“\%\‘\”\�\^]'
52
+
53
+ def remove_accents(text):
54
+ nfkd_form = unicodedata.normalize('NFKD', text)
55
+ return u"".join([c for c in nfkd_form if not unicodedata.combining(c)])
56
+
57
+ def remove_special_characters(text):
58
+ text = re.sub(chars_to_remove_regex, '', text).lower()
59
+ text = re.sub("ç", r'[cedille]', text)
60
+ text = re.sub("&", r'et', text)
61
+ text = re.sub("%", r' pourcents', text)
62
+ text = re.sub("([0-9]+)(,|.)([0-9+])", r'\1 virgule \3', text)
63
+ text = re.sub("\$", r'dollar', text)
64
+ text = re.sub("\£", r'livre', text)
65
+ text = re.sub("\€", r'euro', text)
66
+ text = remove_accents(text)
67
+ text = re.sub(r"\[cedille\]", 'ç', text) + " "
68
+ return text
69
+
70
+ def normalize_text(text: str) -> str:
71
+ text = remove_special_characters(text)
72
+
73
+ # In addition, we can normalize the target text, e.g. removing new lines characters etc...
74
+ # note that order is important here!
75
+ token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
76
+
77
+ for t in token_sequences_to_ignore:
78
+ text = " ".join(text.split(t))
79
+
80
+ return text
81
+
82
+
83
+ def main(args):
84
+ # load dataset
85
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
86
+
87
+ # for testing: only process the first two examples as a test
88
+ dataset = dataset.select(range(20))
89
+
90
+ # load processor
91
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
92
+ sampling_rate = feature_extractor.sampling_rate
93
+
94
+ # resample audio
95
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
96
+
97
+ # load eval pipeline
98
+ if args.device is None:
99
+ args.device = 0 if torch.cuda.is_available() else -1
100
+ asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
101
+
102
+ # map function to decode audio
103
+ def map_to_pred(batch):
104
+ prediction = asr(
105
+ batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
106
+ )
107
+
108
+ batch["prediction"] = prediction["text"]# "".join(prediction["text"].split("<s>"))
109
+ batch["target"] = normalize_text(batch["sentence"])
110
+ return batch
111
+
112
+ # run inference on all examples
113
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
114
+
115
+ # compute and log_results
116
+ # do not change function below
117
+ log_results(result, args)
118
+
119
+
120
+ if __name__ == "__main__":
121
+ parser = argparse.ArgumentParser()
122
+
123
+ parser.add_argument(
124
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
125
+ )
126
+ parser.add_argument(
127
+ "--dataset",
128
+ type=str,
129
+ required=True,
130
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
131
+ )
132
+ parser.add_argument(
133
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
134
+ )
135
+ parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
136
+ parser.add_argument(
137
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
138
+ )
139
+ parser.add_argument(
140
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
141
+ )
142
+ parser.add_argument(
143
+ "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
144
+ )
145
+ parser.add_argument(
146
+ "--device",
147
+ type=int,
148
+ default=None,
149
+ help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
150
+ )
151
+ args = parser.parse_args()
152
+
153
+ main(args)
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "eval_loss": 0.23875188827514648,
4
+ "eval_runtime": 294.1776,
5
+ "eval_samples": 5792,
6
+ "eval_samples_per_second": 19.689,
7
+ "eval_steps_per_second": 0.309,
8
+ "eval_wer": 0.3680797679950471
9
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7be356c0416d66c909300c8a24b255d6bc972bb2572b661bdcc3e0167f8aaba0
3
+ size 1262817457
run.sh ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ WANDB_PROJECT=auto-speech-recognition-french
2
+ python run_speech_recognition_ctc.py \
3
+ --dataset_name="mozilla-foundation/common_voice_8_0" \
4
+ --model_name_or_path="facebook/wav2vec2-xls-r-300m" \
5
+ --dataset_config_name="fr" \
6
+ --tokenizer_name_or_path="./" \
7
+ --output_dir="./" \
8
+ --overwrite_output_dir \
9
+ --num_train_epochs="2" \
10
+ --per_device_train_batch_size="64" \
11
+ --per_device_eval_batch_size="64" \
12
+ --gradient_accumulation_steps="1" \
13
+ --learning_rate="1e-4" \
14
+ --warmup_steps="1500" \
15
+ --length_column_name="input_length" \
16
+ --evaluation_strategy="steps" \
17
+ --text_column_name="sentence" \
18
+ --save_steps="500" \
19
+ --eval_steps="500" \
20
+ --logging_steps="100" \
21
+ --layerdrop="0.0" \
22
+ --activation_dropout="0.05" \
23
+ --save_total_limit="2" \
24
+ --freeze_feature_encoder \
25
+ --feat_proj_dropout="0.0" \
26
+ --mask_time_prob="0.75" \
27
+ --mask_time_length="10" \
28
+ --mask_feature_prob="0.4" \
29
+ --mask_feature_length="10" \
30
+ --gradient_checkpointing \
31
+ --report_to="wandb" \
32
+ --run_name="xls-r-300m-fr" \
33
+ --max_eval_samples="6000" \
34
+ --max_duration_in_seconds="9" \
35
+ --use_auth_token \
36
+ --fp16 \
37
+ --group_by_length \
38
+ --preprocessing_num_workers="64" \
39
+ --do_train --do_eval \
40
+ --load_best_model_at_end \
41
+ --push_to_hub
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+ import unicodedata
28
+
29
+ import datasets
30
+ import numpy as np
31
+ import torch
32
+ from datasets import DatasetDict, load_dataset, load_metric
33
+
34
+ import transformers
35
+ from transformers import (
36
+ AutoConfig,
37
+ AutoFeatureExtractor,
38
+ AutoModelForCTC,
39
+ AutoProcessor,
40
+ AutoTokenizer,
41
+ HfArgumentParser,
42
+ Trainer,
43
+ TrainingArguments,
44
+ Wav2Vec2Processor,
45
+ Wav2Vec2CTCTokenizer,
46
+ set_seed,
47
+ )
48
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
49
+ from transformers.utils import check_min_version
50
+ from transformers.utils.versions import require_version
51
+
52
+
53
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
54
+ check_min_version("4.16.0.dev0")
55
+
56
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
57
+
58
+
59
+ logger = logging.getLogger(__name__)
60
+
61
+
62
+ def list_field(default=None, metadata=None):
63
+ return field(default_factory=lambda: default, metadata=metadata)
64
+
65
+
66
+ @dataclass
67
+ class ModelArguments:
68
+ """
69
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
70
+ """
71
+
72
+ model_name_or_path: str = field(
73
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
74
+ )
75
+ tokenizer_name_or_path: Optional[str] = field(
76
+ default=None,
77
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
78
+ )
79
+ cache_dir: Optional[str] = field(
80
+ default=None,
81
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
82
+ )
83
+ freeze_feature_encoder: bool = field(
84
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
85
+ )
86
+ attention_dropout: float = field(
87
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
88
+ )
89
+ activation_dropout: float = field(
90
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
91
+ )
92
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
93
+ hidden_dropout: float = field(
94
+ default=0.0,
95
+ metadata={
96
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
97
+ },
98
+ )
99
+ final_dropout: float = field(
100
+ default=0.0,
101
+ metadata={"help": "The dropout probability for the final projection layer."},
102
+ )
103
+ mask_time_prob: float = field(
104
+ default=0.05,
105
+ metadata={
106
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
107
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
108
+ "vectors will be masked along the time axis."
109
+ },
110
+ )
111
+ mask_time_length: int = field(
112
+ default=10,
113
+ metadata={"help": "Length of vector span to mask along the time axis."},
114
+ )
115
+ mask_feature_prob: float = field(
116
+ default=0.0,
117
+ metadata={
118
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
119
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
120
+ },
121
+ )
122
+ mask_feature_length: int = field(
123
+ default=10,
124
+ metadata={"help": "Length of vector span to mask along the feature axis."},
125
+ )
126
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
127
+ ctc_loss_reduction: Optional[str] = field(
128
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
129
+ )
130
+
131
+
132
+ @dataclass
133
+ class DataTrainingArguments:
134
+ """
135
+ Arguments pertaining to what data we are going to input our model for training and eval.
136
+
137
+ Using `HfArgumentParser` we can turn this class
138
+ into argparse arguments to be able to specify them on
139
+ the command line.
140
+ """
141
+
142
+ dataset_name: str = field(
143
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
144
+ )
145
+ dataset_config_name: str = field(
146
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
147
+ )
148
+ train_split_name: str = field(
149
+ default="train+validation",
150
+ metadata={
151
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
152
+ },
153
+ )
154
+ eval_split_name: str = field(
155
+ default="test",
156
+ metadata={
157
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
158
+ },
159
+ )
160
+ audio_column_name: str = field(
161
+ default="audio",
162
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
163
+ )
164
+ text_column_name: str = field(
165
+ default="text",
166
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
167
+ )
168
+ overwrite_cache: bool = field(
169
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
170
+ )
171
+ preprocessing_num_workers: Optional[int] = field(
172
+ default=None,
173
+ metadata={"help": "The number of processes to use for the preprocessing."},
174
+ )
175
+ max_train_samples: Optional[int] = field(
176
+ default=None,
177
+ metadata={
178
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
179
+ "value if set."
180
+ },
181
+ )
182
+ max_eval_samples: Optional[int] = field(
183
+ default=None,
184
+ metadata={
185
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
186
+ "value if set."
187
+ },
188
+ )
189
+ chars_to_ignore: Optional[List[str]] = list_field(
190
+ default=None,
191
+ metadata={"help": "A list of characters to remove from the transcripts."},
192
+ )
193
+ eval_metrics: List[str] = list_field(
194
+ default=["wer"],
195
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
196
+ )
197
+ max_duration_in_seconds: float = field(
198
+ default=20.0,
199
+ metadata={
200
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
201
+ },
202
+ )
203
+ min_duration_in_seconds: float = field(
204
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
205
+ )
206
+ preprocessing_only: bool = field(
207
+ default=False,
208
+ metadata={
209
+ "help": "Whether to only do data preprocessing and skip training. "
210
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
211
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
212
+ "so that the cached datasets can consequently be loaded in distributed training"
213
+ },
214
+ )
215
+ use_auth_token: bool = field(
216
+ default=False,
217
+ metadata={
218
+ "help": "If :obj:`True`, will use the token generated when running"
219
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
220
+ },
221
+ )
222
+ unk_token: str = field(
223
+ default="[UNK]",
224
+ metadata={"help": "The unk token for the tokenizer"},
225
+ )
226
+ pad_token: str = field(
227
+ default="[PAD]",
228
+ metadata={"help": "The padding token for the tokenizer"},
229
+ )
230
+ word_delimiter_token: str = field(
231
+ default="|",
232
+ metadata={"help": "The word delimiter token for the tokenizer"},
233
+ )
234
+ phoneme_language: Optional[str] = field(
235
+ default=None,
236
+ metadata={
237
+ "help": "The target language that should be used be"
238
+ " passed to the tokenizer for tokenization. Note that"
239
+ " this is only relevant if the model classifies the"
240
+ " input audio to a sequence of phoneme sequences."
241
+ },
242
+ )
243
+
244
+
245
+ @dataclass
246
+ class DataCollatorCTCWithPadding:
247
+ """
248
+ Data collator that will dynamically pad the inputs received.
249
+ Args:
250
+ processor (:class:`~transformers.AutoProcessor`)
251
+ The processor used for proccessing the data.
252
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
253
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
254
+ among:
255
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
256
+ sequence if provided).
257
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
258
+ maximum acceptable input length for the model if that argument is not provided.
259
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
260
+ different lengths).
261
+ max_length (:obj:`int`, `optional`):
262
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
263
+ max_length_labels (:obj:`int`, `optional`):
264
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
265
+ pad_to_multiple_of (:obj:`int`, `optional`):
266
+ If set will pad the sequence to a multiple of the provided value.
267
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
268
+ 7.5 (Volta).
269
+ """
270
+
271
+ processor: AutoProcessor
272
+ padding: Union[bool, str] = "longest"
273
+ pad_to_multiple_of: Optional[int] = None
274
+ pad_to_multiple_of_labels: Optional[int] = None
275
+
276
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
277
+ # split inputs and labels since they have to be of different lenghts and need
278
+ # different padding methods
279
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
280
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
281
+
282
+ batch = self.processor.pad(
283
+ input_features,
284
+ padding=self.padding,
285
+ pad_to_multiple_of=self.pad_to_multiple_of,
286
+ return_tensors="pt",
287
+ )
288
+
289
+ with self.processor.as_target_processor():
290
+ labels_batch = self.processor.pad(
291
+ label_features,
292
+ padding=self.padding,
293
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
294
+ return_tensors="pt",
295
+ )
296
+
297
+ # replace padding with -100 to ignore loss correctly
298
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
299
+
300
+ batch["labels"] = labels
301
+
302
+ return batch
303
+
304
+
305
+ def create_vocabulary_from_data(
306
+ datasets: DatasetDict,
307
+ word_delimiter_token: Optional[str] = None,
308
+ unk_token: Optional[str] = None,
309
+ pad_token: Optional[str] = None,
310
+ ):
311
+ # Given training and test labels create vocabulary
312
+ def extract_all_chars(batch):
313
+ all_text = " ".join(batch["target_text"])
314
+ vocab = list(set(all_text))
315
+ return {"vocab": [vocab], "all_text": [all_text]}
316
+
317
+ vocabs = datasets.map(
318
+ extract_all_chars,
319
+ batched=True,
320
+ batch_size=-1,
321
+ keep_in_memory=True,
322
+ remove_columns=datasets["train"].column_names,
323
+ )
324
+
325
+ # take union of all unique characters in each dataset
326
+ vocab_set = functools.reduce(
327
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
328
+ )
329
+
330
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
331
+
332
+ # replace white space with delimiter token
333
+ if word_delimiter_token is not None:
334
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
335
+ del vocab_dict[" "]
336
+
337
+ # add unk and pad token
338
+ if unk_token is not None:
339
+ vocab_dict[unk_token] = len(vocab_dict)
340
+
341
+ if pad_token is not None:
342
+ vocab_dict[pad_token] = len(vocab_dict)
343
+
344
+ return vocab_dict
345
+
346
+
347
+ def main():
348
+ # See all possible arguments in src/transformers/training_args.py
349
+ # or by passing the --help flag to this script.
350
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
351
+
352
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
353
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
354
+ # If we pass only one argument to the script and it's the path to a json file,
355
+ # let's parse it to get our arguments.
356
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
357
+ else:
358
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
359
+
360
+ # Detecting last checkpoint.
361
+ last_checkpoint = None
362
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
363
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
364
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
365
+ raise ValueError(
366
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
367
+ "Use --overwrite_output_dir to overcome."
368
+ )
369
+ elif last_checkpoint is not None:
370
+ logger.info(
371
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
372
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
373
+ )
374
+
375
+ # Setup logging
376
+ logging.basicConfig(
377
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
378
+ datefmt="%m/%d/%Y %H:%M:%S",
379
+ handlers=[logging.StreamHandler(sys.stdout)],
380
+ )
381
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
382
+
383
+ # Log on each process the small summary:
384
+ logger.warning(
385
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
386
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
387
+ )
388
+ # Set the verbosity to info of the Transformers logger (on main process only):
389
+ if is_main_process(training_args.local_rank):
390
+ transformers.utils.logging.set_verbosity_info()
391
+ logger.info("Training/evaluation parameters %s", training_args)
392
+
393
+ # Set seed before initializing model.
394
+ set_seed(training_args.seed)
395
+
396
+ # 1. First, let's load the dataset
397
+ raw_datasets = DatasetDict()
398
+
399
+ if training_args.do_train:
400
+ raw_datasets["train"] = load_dataset(
401
+ data_args.dataset_name,
402
+ data_args.dataset_config_name,
403
+ split=data_args.train_split_name,
404
+ use_auth_token=data_args.use_auth_token,
405
+ )
406
+
407
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
408
+ raise ValueError(
409
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
410
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
411
+ f"{', '.join(raw_datasets['train'].column_names)}."
412
+ )
413
+
414
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
415
+ raise ValueError(
416
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
417
+ "Make sure to set `--text_column_name` to the correct text column - one of "
418
+ f"{', '.join(raw_datasets['train'].column_names)}."
419
+ )
420
+
421
+ if data_args.max_train_samples is not None:
422
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
423
+
424
+ if training_args.do_eval:
425
+ raw_datasets["eval"] = load_dataset(
426
+ data_args.dataset_name,
427
+ data_args.dataset_config_name,
428
+ split=data_args.eval_split_name,
429
+ use_auth_token=data_args.use_auth_token,
430
+ )
431
+
432
+ if data_args.max_eval_samples is not None:
433
+ raw_datasets["eval"] = raw_datasets["eval"].shuffle(seed=42).select(range(data_args.max_eval_samples))
434
+
435
+ # 2. We remove some special characters from the datasets
436
+ # that make training complicated and do not help in transcribing the speech
437
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
438
+ # that could be easily picked up by the model
439
+ text_column_name = data_args.text_column_name
440
+
441
+ chars_to_remove_regex = r'[\,\?\.\!\-\_\;\:\"\“\%\‘\”\�\^]'
442
+
443
+ def remove_accents(input_str):
444
+ nfkd_form = unicodedata.normalize('NFKD', input_str)
445
+ return u"".join([c for c in nfkd_form if not unicodedata.combining(c)])
446
+
447
+ def remove_special_characters(batch):
448
+ batch["target_text"] = re.sub(chars_to_remove_regex, '', batch[text_column_name]).lower()
449
+ batch["target_text"] = re.sub("ç", r'[cedille]', batch["target_text"])
450
+ batch["target_text"] = re.sub("&", r'et', batch["target_text"])
451
+ batch["target_text"] = re.sub("%", r' pourcents', batch["target_text"])
452
+ batch["target_text"] = re.sub("([0-9]+)(,|.)([0-9+])", r'\1 virgule \3', batch["target_text"])
453
+ batch["target_text"] = re.sub("\$", r'dollar', batch["target_text"])
454
+ batch["target_text"] = re.sub("\£", r'livre', batch["target_text"])
455
+ batch["target_text"] = re.sub("\€", r'euro', batch["target_text"])
456
+ batch["target_text"] = remove_accents(batch["target_text"])
457
+ batch["target_text"] = re.sub(r"\[cedille\]", 'ç', batch["target_text"]) + " "
458
+ return batch
459
+
460
+ with training_args.main_process_first(desc="dataset map special characters removal"):
461
+ raw_datasets = raw_datasets.map(
462
+ remove_special_characters,
463
+ remove_columns=[text_column_name],
464
+ desc="remove special characters from datasets"
465
+ )
466
+
467
+ # save special tokens for tokenizer
468
+ word_delimiter_token = data_args.word_delimiter_token
469
+ unk_token = data_args.unk_token
470
+ pad_token = data_args.pad_token
471
+
472
+ # 3. Next, let's load the config as we might need it to create
473
+ # the tokenizer
474
+ # load config
475
+ config = AutoConfig.from_pretrained(
476
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
477
+ )
478
+
479
+ # 4. Next, if no tokenizer file is defined,
480
+ # we create the vocabulary of the model by extracting all unique characters from
481
+ # the training and evaluation datasets
482
+ # We need to make sure that only first rank saves vocabulary
483
+ # make sure all processes wait until vocab is created
484
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
485
+ tokenizer_kwargs = {}
486
+ if tokenizer_name_or_path is None:
487
+ # save vocab in training output dir
488
+ tokenizer_name_or_path = training_args.output_dir
489
+
490
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
491
+
492
+ with training_args.main_process_first():
493
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
494
+ os.remove(vocab_file)
495
+
496
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
497
+ if not os.path.isfile(vocab_file):
498
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
499
+ vocab_dict = create_vocabulary_from_data(
500
+ raw_datasets,
501
+ word_delimiter_token=word_delimiter_token,
502
+ unk_token=unk_token,
503
+ pad_token=pad_token,
504
+ )
505
+
506
+ # save vocab dict to be loaded into tokenizer
507
+ with open(vocab_file, "w") as file:
508
+ json.dump(vocab_dict, file)
509
+
510
+ # if tokenizer has just been created
511
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
512
+ tokenizer_kwargs = {
513
+ "config": config if config.tokenizer_class is not None else None,
514
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
515
+ "unk_token": unk_token,
516
+ "pad_token": pad_token,
517
+ "word_delimiter_token": word_delimiter_token,
518
+ }
519
+
520
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
521
+ # Note for distributed training, the .from_pretrained methods guarantee that only
522
+ # one local process can concurrently download model & vocab.
523
+
524
+ # load feature_extractor and tokenizer
525
+ tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(
526
+ tokenizer_name_or_path,
527
+ use_auth_token=data_args.use_auth_token,
528
+ **tokenizer_kwargs,
529
+ )
530
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
531
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
532
+ )
533
+
534
+ # adapt config
535
+ config.update(
536
+ {
537
+ "feat_proj_dropout": model_args.feat_proj_dropout,
538
+ "attention_dropout": model_args.attention_dropout,
539
+ "hidden_dropout": model_args.hidden_dropout,
540
+ "final_dropout": model_args.final_dropout,
541
+ "mask_time_prob": model_args.mask_time_prob,
542
+ "mask_time_length": model_args.mask_time_length,
543
+ "mask_feature_prob": model_args.mask_feature_prob,
544
+ "mask_feature_length": model_args.mask_feature_length,
545
+ "gradient_checkpointing": training_args.gradient_checkpointing,
546
+ "layerdrop": model_args.layerdrop,
547
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
548
+ "pad_token_id": tokenizer.pad_token_id,
549
+ "vocab_size": len(tokenizer),
550
+ "activation_dropout": model_args.activation_dropout,
551
+ }
552
+ )
553
+
554
+ # create model
555
+ model = AutoModelForCTC.from_pretrained(
556
+ model_args.model_name_or_path,
557
+ cache_dir=model_args.cache_dir,
558
+ config=config,
559
+ use_auth_token=data_args.use_auth_token,
560
+ )
561
+
562
+ # freeze encoder
563
+ if model_args.freeze_feature_encoder:
564
+ model.freeze_feature_encoder()
565
+
566
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
567
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
568
+ # so that we just need to set the correct target sampling rate and normalize the input
569
+ # via the `feature_extractor`
570
+
571
+ # make sure that dataset decodes audio with correct sampling rate
572
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
573
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
574
+ raw_datasets = raw_datasets.cast_column(
575
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
576
+ )
577
+
578
+ # derive max & min input length for sample rate & max duration
579
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
580
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
581
+ audio_column_name = data_args.audio_column_name
582
+ num_workers = data_args.preprocessing_num_workers
583
+
584
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
585
+ phoneme_language = data_args.phoneme_language
586
+
587
+ # Preprocessing the datasets.
588
+ # We need to read the audio files as arrays and tokenize the targets.
589
+ def prepare_dataset(batch):
590
+ # load audio
591
+ sample = batch[audio_column_name]
592
+
593
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
594
+ batch["input_values"] = inputs.input_values[0]
595
+ batch["input_length"] = len(batch["input_values"])
596
+
597
+ # encode targets
598
+ additional_kwargs = {}
599
+ if phoneme_language is not None:
600
+ additional_kwargs["phonemizer_lang"] = phoneme_language
601
+
602
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
603
+ return batch
604
+
605
+ with training_args.main_process_first(desc="dataset map preprocessing"):
606
+ vectorized_datasets = raw_datasets.map(
607
+ prepare_dataset,
608
+ remove_columns=next(iter(raw_datasets.values())).column_names,
609
+ batch_size=-1,
610
+ desc="preprocess datasets",
611
+ )
612
+
613
+ def is_audio_in_length_range(length):
614
+ return length > min_input_length and length < max_input_length
615
+
616
+ # filter data that is shorter than min_input_length
617
+ vectorized_datasets = vectorized_datasets.filter(
618
+ is_audio_in_length_range,
619
+ num_proc=num_workers,
620
+ input_columns=["input_length"],
621
+ )
622
+
623
+ # 7. Next, we can prepare the training.
624
+ # Let's use word error rate (WER) as our evaluation metric,
625
+ # instantiate a data collator and the trainer
626
+
627
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
628
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
629
+
630
+ # for large datasets it is advised to run the preprocessing on a
631
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
632
+ # be a timeout when running the script in distributed mode.
633
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
634
+ # cached dataset
635
+ if data_args.preprocessing_only:
636
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
637
+ return
638
+
639
+ def compute_metrics(pred):
640
+ pred_logits = pred.predictions
641
+ pred_ids = np.argmax(pred_logits, axis=-1)
642
+
643
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
644
+
645
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)#being sure to remove <s> from the output
646
+ # we do not want to group tokens when computing the metrics
647
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
648
+
649
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
650
+
651
+ return metrics
652
+
653
+ # Now save everything to be able to create a single processor later
654
+ if is_main_process(training_args.local_rank):
655
+ # save feature extractor, tokenizer and config
656
+ feature_extractor.save_pretrained(training_args.output_dir)
657
+ tokenizer.save_pretrained(training_args.output_dir)
658
+ config.save_pretrained(training_args.output_dir)
659
+
660
+ try:
661
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
662
+ except (OSError, KeyError):
663
+ warnings.warn(
664
+ "Loading a processor from a feature extractor config that does not"
665
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
666
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
667
+ " `'processor_class': 'Wav2Vec2Processor'`",
668
+ FutureWarning,
669
+ )
670
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
671
+
672
+ # Instantiate custom data collator
673
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
674
+
675
+ # Initialize Trainer
676
+ trainer = Trainer(
677
+ model=model,
678
+ data_collator=data_collator,
679
+ args=training_args,
680
+ compute_metrics=compute_metrics,
681
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
682
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
683
+ tokenizer=feature_extractor,
684
+ )
685
+
686
+ # 8. Finally, we can start training
687
+
688
+ # Training
689
+ if training_args.do_train:
690
+
691
+ # use last checkpoint if exist
692
+ if last_checkpoint is not None:
693
+ checkpoint = last_checkpoint
694
+ elif os.path.isdir(model_args.model_name_or_path):
695
+ checkpoint = model_args.model_name_or_path
696
+ else:
697
+ checkpoint = None
698
+
699
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
700
+ trainer.save_model()
701
+
702
+ metrics = train_result.metrics
703
+ max_train_samples = (
704
+ data_args.max_train_samples
705
+ if data_args.max_train_samples is not None
706
+ else len(vectorized_datasets["train"])
707
+ )
708
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
709
+
710
+ trainer.log_metrics("train", metrics)
711
+ trainer.save_metrics("train", metrics)
712
+ trainer.save_state()
713
+
714
+ # Evaluation
715
+ results = {}
716
+ if training_args.do_eval:
717
+ logger.info("*** Evaluate ***")
718
+ metrics = trainer.evaluate()
719
+ max_eval_samples = (
720
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
721
+ )
722
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
723
+
724
+ trainer.log_metrics("eval", metrics)
725
+ trainer.save_metrics("eval", metrics)
726
+
727
+ # Write model card and (optionally) push to hub
728
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
729
+ kwargs = {
730
+ "finetuned_from": model_args.model_name_or_path,
731
+ "tasks": "speech-recognition",
732
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
733
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
734
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
735
+ }
736
+ if "common_voice" in data_args.dataset_name:
737
+ kwargs["language"] = config_name
738
+
739
+ if training_args.push_to_hub:
740
+ trainer.push_to_hub(**kwargs)
741
+ else:
742
+ trainer.create_model_card(**kwargs)
743
+
744
+ return results
745
+
746
+
747
+ if __name__ == "__main__":
748
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": null, "eos_token": null, "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "config": null, "tokenizer_type": "wav2vec2", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "train_loss": 1.442369053426242,
4
+ "train_runtime": 53680.5392,
5
+ "train_samples": 442265,
6
+ "train_samples_per_second": 16.478,
7
+ "train_steps_per_second": 0.257
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1096 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.23875188827514648,
3
+ "best_model_checkpoint": "./checkpoint-13500",
4
+ "epoch": 2.0,
5
+ "global_step": 13822,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 6.533333333333333e-06,
13
+ "loss": 17.2403,
14
+ "step": 100
15
+ },
16
+ {
17
+ "epoch": 0.03,
18
+ "learning_rate": 1.32e-05,
19
+ "loss": 10.2311,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 0.04,
24
+ "learning_rate": 1.9800000000000004e-05,
25
+ "loss": 7.834,
26
+ "step": 300
27
+ },
28
+ {
29
+ "epoch": 0.06,
30
+ "learning_rate": 2.646666666666667e-05,
31
+ "loss": 6.0656,
32
+ "step": 400
33
+ },
34
+ {
35
+ "epoch": 0.07,
36
+ "learning_rate": 3.313333333333333e-05,
37
+ "loss": 4.3748,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 0.07,
42
+ "eval_loss": 3.878422975540161,
43
+ "eval_runtime": 285.8223,
44
+ "eval_samples_per_second": 20.264,
45
+ "eval_steps_per_second": 0.318,
46
+ "eval_wer": 1.0,
47
+ "step": 500
48
+ },
49
+ {
50
+ "epoch": 0.09,
51
+ "learning_rate": 3.9800000000000005e-05,
52
+ "loss": 3.2923,
53
+ "step": 600
54
+ },
55
+ {
56
+ "epoch": 0.1,
57
+ "learning_rate": 4.646666666666667e-05,
58
+ "loss": 2.9475,
59
+ "step": 700
60
+ },
61
+ {
62
+ "epoch": 0.12,
63
+ "learning_rate": 5.3133333333333335e-05,
64
+ "loss": 2.8639,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 0.13,
69
+ "learning_rate": 5.9800000000000003e-05,
70
+ "loss": 2.8265,
71
+ "step": 900
72
+ },
73
+ {
74
+ "epoch": 0.14,
75
+ "learning_rate": 6.646666666666667e-05,
76
+ "loss": 2.8068,
77
+ "step": 1000
78
+ },
79
+ {
80
+ "epoch": 0.14,
81
+ "eval_loss": 2.828850746154785,
82
+ "eval_runtime": 292.3877,
83
+ "eval_samples_per_second": 19.809,
84
+ "eval_steps_per_second": 0.311,
85
+ "eval_wer": 0.9826485059793412,
86
+ "step": 1000
87
+ },
88
+ {
89
+ "epoch": 0.16,
90
+ "learning_rate": 7.306666666666668e-05,
91
+ "loss": 2.779,
92
+ "step": 1100
93
+ },
94
+ {
95
+ "epoch": 0.17,
96
+ "learning_rate": 7.973333333333334e-05,
97
+ "loss": 2.6402,
98
+ "step": 1200
99
+ },
100
+ {
101
+ "epoch": 0.19,
102
+ "learning_rate": 8.64e-05,
103
+ "loss": 2.1119,
104
+ "step": 1300
105
+ },
106
+ {
107
+ "epoch": 0.2,
108
+ "learning_rate": 9.306666666666667e-05,
109
+ "loss": 1.7965,
110
+ "step": 1400
111
+ },
112
+ {
113
+ "epoch": 0.22,
114
+ "learning_rate": 9.973333333333334e-05,
115
+ "loss": 1.6698,
116
+ "step": 1500
117
+ },
118
+ {
119
+ "epoch": 0.22,
120
+ "eval_loss": 0.881136417388916,
121
+ "eval_runtime": 297.1806,
122
+ "eval_samples_per_second": 19.49,
123
+ "eval_steps_per_second": 0.306,
124
+ "eval_wer": 0.7127472384241911,
125
+ "step": 1500
126
+ },
127
+ {
128
+ "epoch": 0.23,
129
+ "learning_rate": 9.92209056971271e-05,
130
+ "loss": 1.5882,
131
+ "step": 1600
132
+ },
133
+ {
134
+ "epoch": 0.25,
135
+ "learning_rate": 9.840934913163448e-05,
136
+ "loss": 1.5172,
137
+ "step": 1700
138
+ },
139
+ {
140
+ "epoch": 0.26,
141
+ "learning_rate": 9.759779256614186e-05,
142
+ "loss": 1.4579,
143
+ "step": 1800
144
+ },
145
+ {
146
+ "epoch": 0.27,
147
+ "learning_rate": 9.678623600064926e-05,
148
+ "loss": 1.3829,
149
+ "step": 1900
150
+ },
151
+ {
152
+ "epoch": 0.29,
153
+ "learning_rate": 9.597467943515663e-05,
154
+ "loss": 1.3488,
155
+ "step": 2000
156
+ },
157
+ {
158
+ "epoch": 0.29,
159
+ "eval_loss": 0.516592800617218,
160
+ "eval_runtime": 301.2842,
161
+ "eval_samples_per_second": 19.224,
162
+ "eval_steps_per_second": 0.302,
163
+ "eval_wer": 0.5369024731988661,
164
+ "step": 2000
165
+ },
166
+ {
167
+ "epoch": 0.3,
168
+ "learning_rate": 9.516312286966402e-05,
169
+ "loss": 1.2981,
170
+ "step": 2100
171
+ },
172
+ {
173
+ "epoch": 0.32,
174
+ "learning_rate": 9.43515663041714e-05,
175
+ "loss": 1.2845,
176
+ "step": 2200
177
+ },
178
+ {
179
+ "epoch": 0.33,
180
+ "learning_rate": 9.354000973867879e-05,
181
+ "loss": 1.2459,
182
+ "step": 2300
183
+ },
184
+ {
185
+ "epoch": 0.35,
186
+ "learning_rate": 9.272845317318618e-05,
187
+ "loss": 1.2255,
188
+ "step": 2400
189
+ },
190
+ {
191
+ "epoch": 0.36,
192
+ "learning_rate": 9.191689660769356e-05,
193
+ "loss": 1.2239,
194
+ "step": 2500
195
+ },
196
+ {
197
+ "epoch": 0.36,
198
+ "eval_loss": 0.4104757010936737,
199
+ "eval_runtime": 299.1395,
200
+ "eval_samples_per_second": 19.362,
201
+ "eval_steps_per_second": 0.304,
202
+ "eval_wer": 0.474111245071524,
203
+ "step": 2500
204
+ },
205
+ {
206
+ "epoch": 0.38,
207
+ "learning_rate": 9.110534004220094e-05,
208
+ "loss": 1.2024,
209
+ "step": 2600
210
+ },
211
+ {
212
+ "epoch": 0.39,
213
+ "learning_rate": 9.030189904236326e-05,
214
+ "loss": 1.1851,
215
+ "step": 2700
216
+ },
217
+ {
218
+ "epoch": 0.41,
219
+ "learning_rate": 8.949034247687063e-05,
220
+ "loss": 1.1768,
221
+ "step": 2800
222
+ },
223
+ {
224
+ "epoch": 0.42,
225
+ "learning_rate": 8.867878591137803e-05,
226
+ "loss": 1.1641,
227
+ "step": 2900
228
+ },
229
+ {
230
+ "epoch": 0.43,
231
+ "learning_rate": 8.786722934588541e-05,
232
+ "loss": 1.1537,
233
+ "step": 3000
234
+ },
235
+ {
236
+ "epoch": 0.43,
237
+ "eval_loss": 0.35850802063941956,
238
+ "eval_runtime": 299.662,
239
+ "eval_samples_per_second": 19.328,
240
+ "eval_steps_per_second": 0.304,
241
+ "eval_wer": 0.4448499462348073,
242
+ "step": 3000
243
+ },
244
+ {
245
+ "epoch": 0.45,
246
+ "learning_rate": 8.70556727803928e-05,
247
+ "loss": 1.1449,
248
+ "step": 3100
249
+ },
250
+ {
251
+ "epoch": 0.46,
252
+ "learning_rate": 8.624411621490018e-05,
253
+ "loss": 1.1379,
254
+ "step": 3200
255
+ },
256
+ {
257
+ "epoch": 0.48,
258
+ "learning_rate": 8.543255964940758e-05,
259
+ "loss": 1.1331,
260
+ "step": 3300
261
+ },
262
+ {
263
+ "epoch": 0.49,
264
+ "learning_rate": 8.462100308391495e-05,
265
+ "loss": 1.1205,
266
+ "step": 3400
267
+ },
268
+ {
269
+ "epoch": 0.51,
270
+ "learning_rate": 8.380944651842234e-05,
271
+ "loss": 1.1184,
272
+ "step": 3500
273
+ },
274
+ {
275
+ "epoch": 0.51,
276
+ "eval_loss": 0.333638072013855,
277
+ "eval_runtime": 297.0402,
278
+ "eval_samples_per_second": 19.499,
279
+ "eval_steps_per_second": 0.306,
280
+ "eval_wer": 0.42922545537489004,
281
+ "step": 3500
282
+ },
283
+ {
284
+ "epoch": 0.52,
285
+ "learning_rate": 8.299788995292971e-05,
286
+ "loss": 1.1014,
287
+ "step": 3600
288
+ },
289
+ {
290
+ "epoch": 0.54,
291
+ "learning_rate": 8.218633338743711e-05,
292
+ "loss": 1.1114,
293
+ "step": 3700
294
+ },
295
+ {
296
+ "epoch": 0.55,
297
+ "learning_rate": 8.13747768219445e-05,
298
+ "loss": 1.117,
299
+ "step": 3800
300
+ },
301
+ {
302
+ "epoch": 0.56,
303
+ "learning_rate": 8.056322025645188e-05,
304
+ "loss": 1.102,
305
+ "step": 3900
306
+ },
307
+ {
308
+ "epoch": 0.58,
309
+ "learning_rate": 7.975166369095926e-05,
310
+ "loss": 1.0968,
311
+ "step": 4000
312
+ },
313
+ {
314
+ "epoch": 0.58,
315
+ "eval_loss": 0.31949570775032043,
316
+ "eval_runtime": 296.0172,
317
+ "eval_samples_per_second": 19.566,
318
+ "eval_steps_per_second": 0.307,
319
+ "eval_wer": 0.4180162273127179,
320
+ "step": 4000
321
+ },
322
+ {
323
+ "epoch": 0.59,
324
+ "learning_rate": 7.894822269112158e-05,
325
+ "loss": 1.0942,
326
+ "step": 4100
327
+ },
328
+ {
329
+ "epoch": 0.61,
330
+ "learning_rate": 7.813666612562897e-05,
331
+ "loss": 1.0859,
332
+ "step": 4200
333
+ },
334
+ {
335
+ "epoch": 0.62,
336
+ "learning_rate": 7.732510956013635e-05,
337
+ "loss": 1.0767,
338
+ "step": 4300
339
+ },
340
+ {
341
+ "epoch": 0.64,
342
+ "learning_rate": 7.652166856029866e-05,
343
+ "loss": 1.0766,
344
+ "step": 4400
345
+ },
346
+ {
347
+ "epoch": 0.65,
348
+ "learning_rate": 7.571011199480604e-05,
349
+ "loss": 1.0737,
350
+ "step": 4500
351
+ },
352
+ {
353
+ "epoch": 0.65,
354
+ "eval_loss": 0.30754634737968445,
355
+ "eval_runtime": 296.2378,
356
+ "eval_samples_per_second": 19.552,
357
+ "eval_steps_per_second": 0.307,
358
+ "eval_wer": 0.41408973899442797,
359
+ "step": 4500
360
+ },
361
+ {
362
+ "epoch": 0.67,
363
+ "learning_rate": 7.489855542931342e-05,
364
+ "loss": 1.0807,
365
+ "step": 4600
366
+ },
367
+ {
368
+ "epoch": 0.68,
369
+ "learning_rate": 7.40869988638208e-05,
370
+ "loss": 1.071,
371
+ "step": 4700
372
+ },
373
+ {
374
+ "epoch": 0.69,
375
+ "learning_rate": 7.32754422983282e-05,
376
+ "loss": 1.0613,
377
+ "step": 4800
378
+ },
379
+ {
380
+ "epoch": 0.71,
381
+ "learning_rate": 7.246388573283557e-05,
382
+ "loss": 1.0635,
383
+ "step": 4900
384
+ },
385
+ {
386
+ "epoch": 0.72,
387
+ "learning_rate": 7.165232916734297e-05,
388
+ "loss": 1.0677,
389
+ "step": 5000
390
+ },
391
+ {
392
+ "epoch": 0.72,
393
+ "eval_loss": 0.30150118470191956,
394
+ "eval_runtime": 297.4742,
395
+ "eval_samples_per_second": 19.471,
396
+ "eval_steps_per_second": 0.306,
397
+ "eval_wer": 0.4089250219948516,
398
+ "step": 5000
399
+ },
400
+ {
401
+ "epoch": 0.74,
402
+ "learning_rate": 7.084077260185034e-05,
403
+ "loss": 1.0707,
404
+ "step": 5100
405
+ },
406
+ {
407
+ "epoch": 0.75,
408
+ "learning_rate": 7.002921603635774e-05,
409
+ "loss": 1.0617,
410
+ "step": 5200
411
+ },
412
+ {
413
+ "epoch": 0.77,
414
+ "learning_rate": 6.921765947086512e-05,
415
+ "loss": 1.0566,
416
+ "step": 5300
417
+ },
418
+ {
419
+ "epoch": 0.78,
420
+ "learning_rate": 6.84061029053725e-05,
421
+ "loss": 1.0518,
422
+ "step": 5400
423
+ },
424
+ {
425
+ "epoch": 0.8,
426
+ "learning_rate": 6.760266190553481e-05,
427
+ "loss": 1.0462,
428
+ "step": 5500
429
+ },
430
+ {
431
+ "epoch": 0.8,
432
+ "eval_loss": 0.297052800655365,
433
+ "eval_runtime": 296.1592,
434
+ "eval_samples_per_second": 19.557,
435
+ "eval_steps_per_second": 0.307,
436
+ "eval_wer": 0.4077193782788621,
437
+ "step": 5500
438
+ },
439
+ {
440
+ "epoch": 0.81,
441
+ "learning_rate": 6.679110534004221e-05,
442
+ "loss": 1.0514,
443
+ "step": 5600
444
+ },
445
+ {
446
+ "epoch": 0.82,
447
+ "learning_rate": 6.597954877454959e-05,
448
+ "loss": 1.0446,
449
+ "step": 5700
450
+ },
451
+ {
452
+ "epoch": 0.84,
453
+ "learning_rate": 6.516799220905698e-05,
454
+ "loss": 1.0358,
455
+ "step": 5800
456
+ },
457
+ {
458
+ "epoch": 0.85,
459
+ "learning_rate": 6.435643564356436e-05,
460
+ "loss": 1.0364,
461
+ "step": 5900
462
+ },
463
+ {
464
+ "epoch": 0.87,
465
+ "learning_rate": 6.354487907807174e-05,
466
+ "loss": 1.0392,
467
+ "step": 6000
468
+ },
469
+ {
470
+ "epoch": 0.87,
471
+ "eval_loss": 0.2870033383369446,
472
+ "eval_runtime": 295.9814,
473
+ "eval_samples_per_second": 19.569,
474
+ "eval_steps_per_second": 0.307,
475
+ "eval_wer": 0.3997034768157972,
476
+ "step": 6000
477
+ },
478
+ {
479
+ "epoch": 0.88,
480
+ "learning_rate": 6.273332251257913e-05,
481
+ "loss": 1.0375,
482
+ "step": 6100
483
+ },
484
+ {
485
+ "epoch": 0.9,
486
+ "learning_rate": 6.192176594708652e-05,
487
+ "loss": 1.0408,
488
+ "step": 6200
489
+ },
490
+ {
491
+ "epoch": 0.91,
492
+ "learning_rate": 6.11102093815939e-05,
493
+ "loss": 1.0382,
494
+ "step": 6300
495
+ },
496
+ {
497
+ "epoch": 0.93,
498
+ "learning_rate": 6.0298652816101284e-05,
499
+ "loss": 1.0335,
500
+ "step": 6400
501
+ },
502
+ {
503
+ "epoch": 0.94,
504
+ "learning_rate": 5.948709625060867e-05,
505
+ "loss": 1.0178,
506
+ "step": 6500
507
+ },
508
+ {
509
+ "epoch": 0.94,
510
+ "eval_loss": 0.28046590089797974,
511
+ "eval_runtime": 297.8045,
512
+ "eval_samples_per_second": 19.449,
513
+ "eval_steps_per_second": 0.306,
514
+ "eval_wer": 0.39629834794225943,
515
+ "step": 6500
516
+ },
517
+ {
518
+ "epoch": 0.95,
519
+ "learning_rate": 5.867553968511605e-05,
520
+ "loss": 1.0312,
521
+ "step": 6600
522
+ },
523
+ {
524
+ "epoch": 0.97,
525
+ "learning_rate": 5.786398311962344e-05,
526
+ "loss": 1.033,
527
+ "step": 6700
528
+ },
529
+ {
530
+ "epoch": 0.98,
531
+ "learning_rate": 5.7052426554130825e-05,
532
+ "loss": 1.0289,
533
+ "step": 6800
534
+ },
535
+ {
536
+ "epoch": 1.0,
537
+ "learning_rate": 5.624086998863821e-05,
538
+ "loss": 1.027,
539
+ "step": 6900
540
+ },
541
+ {
542
+ "epoch": 1.01,
543
+ "learning_rate": 5.54293134231456e-05,
544
+ "loss": 0.992,
545
+ "step": 7000
546
+ },
547
+ {
548
+ "epoch": 1.01,
549
+ "eval_loss": 0.2747785747051239,
550
+ "eval_runtime": 298.4841,
551
+ "eval_samples_per_second": 19.405,
552
+ "eval_steps_per_second": 0.305,
553
+ "eval_wer": 0.39352862589201343,
554
+ "step": 7000
555
+ },
556
+ {
557
+ "epoch": 1.03,
558
+ "learning_rate": 5.461775685765298e-05,
559
+ "loss": 1.0025,
560
+ "step": 7100
561
+ },
562
+ {
563
+ "epoch": 1.04,
564
+ "learning_rate": 5.3806200292160366e-05,
565
+ "loss": 1.0122,
566
+ "step": 7200
567
+ },
568
+ {
569
+ "epoch": 1.06,
570
+ "learning_rate": 5.299464372666775e-05,
571
+ "loss": 1.018,
572
+ "step": 7300
573
+ },
574
+ {
575
+ "epoch": 1.07,
576
+ "learning_rate": 5.218308716117514e-05,
577
+ "loss": 0.9936,
578
+ "step": 7400
579
+ },
580
+ {
581
+ "epoch": 1.09,
582
+ "learning_rate": 5.137153059568252e-05,
583
+ "loss": 1.0197,
584
+ "step": 7500
585
+ },
586
+ {
587
+ "epoch": 1.09,
588
+ "eval_loss": 0.26907604932785034,
589
+ "eval_runtime": 298.796,
590
+ "eval_samples_per_second": 19.384,
591
+ "eval_steps_per_second": 0.305,
592
+ "eval_wer": 0.3884453713056796,
593
+ "step": 7500
594
+ },
595
+ {
596
+ "epoch": 1.1,
597
+ "learning_rate": 5.055997403018991e-05,
598
+ "loss": 1.008,
599
+ "step": 7600
600
+ },
601
+ {
602
+ "epoch": 1.11,
603
+ "learning_rate": 4.97484174646973e-05,
604
+ "loss": 1.0028,
605
+ "step": 7700
606
+ },
607
+ {
608
+ "epoch": 1.13,
609
+ "learning_rate": 4.893686089920468e-05,
610
+ "loss": 0.9929,
611
+ "step": 7800
612
+ },
613
+ {
614
+ "epoch": 1.14,
615
+ "learning_rate": 4.8125304333712064e-05,
616
+ "loss": 0.995,
617
+ "step": 7900
618
+ },
619
+ {
620
+ "epoch": 1.16,
621
+ "learning_rate": 4.731374776821945e-05,
622
+ "loss": 1.0056,
623
+ "step": 8000
624
+ },
625
+ {
626
+ "epoch": 1.16,
627
+ "eval_loss": 0.26817116141319275,
628
+ "eval_runtime": 298.1504,
629
+ "eval_samples_per_second": 19.426,
630
+ "eval_steps_per_second": 0.305,
631
+ "eval_wer": 0.3888526833718922,
632
+ "step": 8000
633
+ },
634
+ {
635
+ "epoch": 1.17,
636
+ "learning_rate": 4.6510306768381754e-05,
637
+ "loss": 0.9971,
638
+ "step": 8100
639
+ },
640
+ {
641
+ "epoch": 1.19,
642
+ "learning_rate": 4.5698750202889145e-05,
643
+ "loss": 0.9976,
644
+ "step": 8200
645
+ },
646
+ {
647
+ "epoch": 1.2,
648
+ "learning_rate": 4.488719363739653e-05,
649
+ "loss": 1.0014,
650
+ "step": 8300
651
+ },
652
+ {
653
+ "epoch": 1.22,
654
+ "learning_rate": 4.407563707190391e-05,
655
+ "loss": 0.9835,
656
+ "step": 8400
657
+ },
658
+ {
659
+ "epoch": 1.23,
660
+ "learning_rate": 4.3272196072066225e-05,
661
+ "loss": 0.9826,
662
+ "step": 8500
663
+ },
664
+ {
665
+ "epoch": 1.23,
666
+ "eval_loss": 0.26473307609558105,
667
+ "eval_runtime": 299.0161,
668
+ "eval_samples_per_second": 19.37,
669
+ "eval_steps_per_second": 0.304,
670
+ "eval_wer": 0.38675095311023494,
671
+ "step": 8500
672
+ },
673
+ {
674
+ "epoch": 1.24,
675
+ "learning_rate": 4.2460639506573615e-05,
676
+ "loss": 0.9838,
677
+ "step": 8600
678
+ },
679
+ {
680
+ "epoch": 1.26,
681
+ "learning_rate": 4.1649082941081e-05,
682
+ "loss": 0.9836,
683
+ "step": 8700
684
+ },
685
+ {
686
+ "epoch": 1.27,
687
+ "learning_rate": 4.0845641941243305e-05,
688
+ "loss": 0.9824,
689
+ "step": 8800
690
+ },
691
+ {
692
+ "epoch": 1.29,
693
+ "learning_rate": 4.003408537575069e-05,
694
+ "loss": 0.9715,
695
+ "step": 8900
696
+ },
697
+ {
698
+ "epoch": 1.3,
699
+ "learning_rate": 3.922252881025807e-05,
700
+ "loss": 0.9815,
701
+ "step": 9000
702
+ },
703
+ {
704
+ "epoch": 1.3,
705
+ "eval_loss": 0.26034271717071533,
706
+ "eval_runtime": 299.6782,
707
+ "eval_samples_per_second": 19.327,
708
+ "eval_steps_per_second": 0.304,
709
+ "eval_wer": 0.3831828994102121,
710
+ "step": 9000
711
+ },
712
+ {
713
+ "epoch": 1.32,
714
+ "learning_rate": 3.841097224476546e-05,
715
+ "loss": 0.9757,
716
+ "step": 9100
717
+ },
718
+ {
719
+ "epoch": 1.33,
720
+ "learning_rate": 3.7599415679272846e-05,
721
+ "loss": 0.9689,
722
+ "step": 9200
723
+ },
724
+ {
725
+ "epoch": 1.35,
726
+ "learning_rate": 3.678785911378023e-05,
727
+ "loss": 0.9778,
728
+ "step": 9300
729
+ },
730
+ {
731
+ "epoch": 1.36,
732
+ "learning_rate": 3.5976302548287614e-05,
733
+ "loss": 0.9794,
734
+ "step": 9400
735
+ },
736
+ {
737
+ "epoch": 1.37,
738
+ "learning_rate": 3.5164745982795e-05,
739
+ "loss": 0.9717,
740
+ "step": 9500
741
+ },
742
+ {
743
+ "epoch": 1.37,
744
+ "eval_loss": 0.25609487295150757,
745
+ "eval_runtime": 299.6976,
746
+ "eval_samples_per_second": 19.326,
747
+ "eval_steps_per_second": 0.304,
748
+ "eval_wer": 0.3807064420476392,
749
+ "step": 9500
750
+ },
751
+ {
752
+ "epoch": 1.39,
753
+ "learning_rate": 3.435318941730239e-05,
754
+ "loss": 0.9752,
755
+ "step": 9600
756
+ },
757
+ {
758
+ "epoch": 1.4,
759
+ "learning_rate": 3.354163285180977e-05,
760
+ "loss": 0.965,
761
+ "step": 9700
762
+ },
763
+ {
764
+ "epoch": 1.42,
765
+ "learning_rate": 3.2730076286317155e-05,
766
+ "loss": 0.9522,
767
+ "step": 9800
768
+ },
769
+ {
770
+ "epoch": 1.43,
771
+ "learning_rate": 3.191851972082454e-05,
772
+ "loss": 0.9718,
773
+ "step": 9900
774
+ },
775
+ {
776
+ "epoch": 1.45,
777
+ "learning_rate": 3.110696315533193e-05,
778
+ "loss": 0.9605,
779
+ "step": 10000
780
+ },
781
+ {
782
+ "epoch": 1.45,
783
+ "eval_loss": 0.25231894850730896,
784
+ "eval_runtime": 297.5796,
785
+ "eval_samples_per_second": 19.464,
786
+ "eval_steps_per_second": 0.306,
787
+ "eval_wer": 0.3782951546156603,
788
+ "step": 10000
789
+ },
790
+ {
791
+ "epoch": 1.46,
792
+ "learning_rate": 3.0295406589839315e-05,
793
+ "loss": 0.9635,
794
+ "step": 10100
795
+ },
796
+ {
797
+ "epoch": 1.48,
798
+ "learning_rate": 2.94838500243467e-05,
799
+ "loss": 0.9632,
800
+ "step": 10200
801
+ },
802
+ {
803
+ "epoch": 1.49,
804
+ "learning_rate": 2.8672293458854082e-05,
805
+ "loss": 0.9548,
806
+ "step": 10300
807
+ },
808
+ {
809
+ "epoch": 1.5,
810
+ "learning_rate": 2.7868852459016392e-05,
811
+ "loss": 0.9554,
812
+ "step": 10400
813
+ },
814
+ {
815
+ "epoch": 1.52,
816
+ "learning_rate": 2.7057295893523783e-05,
817
+ "loss": 0.96,
818
+ "step": 10500
819
+ },
820
+ {
821
+ "epoch": 1.52,
822
+ "eval_loss": 0.24939315021038055,
823
+ "eval_runtime": 300.036,
824
+ "eval_samples_per_second": 19.304,
825
+ "eval_steps_per_second": 0.303,
826
+ "eval_wer": 0.3787513441298185,
827
+ "step": 10500
828
+ },
829
+ {
830
+ "epoch": 1.53,
831
+ "learning_rate": 2.6245739328031166e-05,
832
+ "loss": 0.9611,
833
+ "step": 10600
834
+ },
835
+ {
836
+ "epoch": 1.55,
837
+ "learning_rate": 2.543418276253855e-05,
838
+ "loss": 0.9594,
839
+ "step": 10700
840
+ },
841
+ {
842
+ "epoch": 1.56,
843
+ "learning_rate": 2.4622626197045937e-05,
844
+ "loss": 0.9589,
845
+ "step": 10800
846
+ },
847
+ {
848
+ "epoch": 1.58,
849
+ "learning_rate": 2.381106963155332e-05,
850
+ "loss": 0.9441,
851
+ "step": 10900
852
+ },
853
+ {
854
+ "epoch": 1.59,
855
+ "learning_rate": 2.2999513066060704e-05,
856
+ "loss": 0.9442,
857
+ "step": 11000
858
+ },
859
+ {
860
+ "epoch": 1.59,
861
+ "eval_loss": 0.24783751368522644,
862
+ "eval_runtime": 297.7741,
863
+ "eval_samples_per_second": 19.451,
864
+ "eval_steps_per_second": 0.306,
865
+ "eval_wer": 0.3760142070448695,
866
+ "step": 11000
867
+ },
868
+ {
869
+ "epoch": 1.61,
870
+ "learning_rate": 2.218795650056809e-05,
871
+ "loss": 0.9496,
872
+ "step": 11100
873
+ },
874
+ {
875
+ "epoch": 1.62,
876
+ "learning_rate": 2.1376399935075474e-05,
877
+ "loss": 0.9486,
878
+ "step": 11200
879
+ },
880
+ {
881
+ "epoch": 1.64,
882
+ "learning_rate": 2.056484336958286e-05,
883
+ "loss": 0.9558,
884
+ "step": 11300
885
+ },
886
+ {
887
+ "epoch": 1.65,
888
+ "learning_rate": 1.9753286804090245e-05,
889
+ "loss": 0.9486,
890
+ "step": 11400
891
+ },
892
+ {
893
+ "epoch": 1.66,
894
+ "learning_rate": 1.8941730238597632e-05,
895
+ "loss": 0.9564,
896
+ "step": 11500
897
+ },
898
+ {
899
+ "epoch": 1.66,
900
+ "eval_loss": 0.2454409897327423,
901
+ "eval_runtime": 296.0265,
902
+ "eval_samples_per_second": 19.566,
903
+ "eval_steps_per_second": 0.307,
904
+ "eval_wer": 0.3733096549252175,
905
+ "step": 11500
906
+ },
907
+ {
908
+ "epoch": 1.68,
909
+ "learning_rate": 1.8130173673105015e-05,
910
+ "loss": 0.9427,
911
+ "step": 11600
912
+ },
913
+ {
914
+ "epoch": 1.69,
915
+ "learning_rate": 1.73186171076124e-05,
916
+ "loss": 0.9423,
917
+ "step": 11700
918
+ },
919
+ {
920
+ "epoch": 1.71,
921
+ "learning_rate": 1.6507060542119786e-05,
922
+ "loss": 0.9503,
923
+ "step": 11800
924
+ },
925
+ {
926
+ "epoch": 1.72,
927
+ "learning_rate": 1.5695503976627173e-05,
928
+ "loss": 0.9383,
929
+ "step": 11900
930
+ },
931
+ {
932
+ "epoch": 1.74,
933
+ "learning_rate": 1.4883947411134558e-05,
934
+ "loss": 0.9436,
935
+ "step": 12000
936
+ },
937
+ {
938
+ "epoch": 1.74,
939
+ "eval_loss": 0.24390804767608643,
940
+ "eval_runtime": 295.4584,
941
+ "eval_samples_per_second": 19.603,
942
+ "eval_steps_per_second": 0.308,
943
+ "eval_wer": 0.37467822346769203,
944
+ "step": 12000
945
+ },
946
+ {
947
+ "epoch": 1.75,
948
+ "learning_rate": 1.4072390845641942e-05,
949
+ "loss": 0.9491,
950
+ "step": 12100
951
+ },
952
+ {
953
+ "epoch": 1.77,
954
+ "learning_rate": 1.3260834280149325e-05,
955
+ "loss": 0.9419,
956
+ "step": 12200
957
+ },
958
+ {
959
+ "epoch": 1.78,
960
+ "learning_rate": 1.2449277714656712e-05,
961
+ "loss": 0.9517,
962
+ "step": 12300
963
+ },
964
+ {
965
+ "epoch": 1.79,
966
+ "learning_rate": 1.1637721149164097e-05,
967
+ "loss": 0.9367,
968
+ "step": 12400
969
+ },
970
+ {
971
+ "epoch": 1.81,
972
+ "learning_rate": 1.0826164583671483e-05,
973
+ "loss": 0.938,
974
+ "step": 12500
975
+ },
976
+ {
977
+ "epoch": 1.81,
978
+ "eval_loss": 0.24111612141132355,
979
+ "eval_runtime": 296.9314,
980
+ "eval_samples_per_second": 19.506,
981
+ "eval_steps_per_second": 0.306,
982
+ "eval_wer": 0.37159894424712436,
983
+ "step": 12500
984
+ },
985
+ {
986
+ "epoch": 1.82,
987
+ "learning_rate": 1.0014608018178868e-05,
988
+ "loss": 0.9337,
989
+ "step": 12600
990
+ },
991
+ {
992
+ "epoch": 1.84,
993
+ "learning_rate": 9.203051452686253e-06,
994
+ "loss": 0.9284,
995
+ "step": 12700
996
+ },
997
+ {
998
+ "epoch": 1.85,
999
+ "learning_rate": 8.391494887193638e-06,
1000
+ "loss": 0.938,
1001
+ "step": 12800
1002
+ },
1003
+ {
1004
+ "epoch": 1.87,
1005
+ "learning_rate": 7.579938321701023e-06,
1006
+ "loss": 0.9365,
1007
+ "step": 12900
1008
+ },
1009
+ {
1010
+ "epoch": 1.88,
1011
+ "learning_rate": 6.768381756208409e-06,
1012
+ "loss": 0.9353,
1013
+ "step": 13000
1014
+ },
1015
+ {
1016
+ "epoch": 1.88,
1017
+ "eval_loss": 0.23965783417224884,
1018
+ "eval_runtime": 296.6078,
1019
+ "eval_samples_per_second": 19.527,
1020
+ "eval_steps_per_second": 0.307,
1021
+ "eval_wer": 0.3697904786731402,
1022
+ "step": 13000
1023
+ },
1024
+ {
1025
+ "epoch": 1.9,
1026
+ "learning_rate": 5.956825190715793e-06,
1027
+ "loss": 0.9413,
1028
+ "step": 13100
1029
+ },
1030
+ {
1031
+ "epoch": 1.91,
1032
+ "learning_rate": 5.153384190878104e-06,
1033
+ "loss": 0.9356,
1034
+ "step": 13200
1035
+ },
1036
+ {
1037
+ "epoch": 1.92,
1038
+ "learning_rate": 4.34182762538549e-06,
1039
+ "loss": 0.9209,
1040
+ "step": 13300
1041
+ },
1042
+ {
1043
+ "epoch": 1.94,
1044
+ "learning_rate": 3.530271059892875e-06,
1045
+ "loss": 0.9362,
1046
+ "step": 13400
1047
+ },
1048
+ {
1049
+ "epoch": 1.95,
1050
+ "learning_rate": 2.71871449440026e-06,
1051
+ "loss": 0.9271,
1052
+ "step": 13500
1053
+ },
1054
+ {
1055
+ "epoch": 1.95,
1056
+ "eval_loss": 0.23875188827514648,
1057
+ "eval_runtime": 296.9414,
1058
+ "eval_samples_per_second": 19.506,
1059
+ "eval_steps_per_second": 0.306,
1060
+ "eval_wer": 0.3680797679950471,
1061
+ "step": 13500
1062
+ },
1063
+ {
1064
+ "epoch": 1.97,
1065
+ "learning_rate": 1.907157928907645e-06,
1066
+ "loss": 0.9288,
1067
+ "step": 13600
1068
+ },
1069
+ {
1070
+ "epoch": 1.98,
1071
+ "learning_rate": 1.0956013634150302e-06,
1072
+ "loss": 0.9345,
1073
+ "step": 13700
1074
+ },
1075
+ {
1076
+ "epoch": 2.0,
1077
+ "learning_rate": 2.840447979224152e-07,
1078
+ "loss": 0.9326,
1079
+ "step": 13800
1080
+ },
1081
+ {
1082
+ "epoch": 2.0,
1083
+ "step": 13822,
1084
+ "total_flos": 1.2600843645735263e+20,
1085
+ "train_loss": 1.442369053426242,
1086
+ "train_runtime": 53680.5392,
1087
+ "train_samples_per_second": 16.478,
1088
+ "train_steps_per_second": 0.257
1089
+ }
1090
+ ],
1091
+ "max_steps": 13822,
1092
+ "num_train_epochs": 2,
1093
+ "total_flos": 1.2600843645735263e+20,
1094
+ "trial_name": null,
1095
+ "trial_params": null
1096
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3515fcb3146dcedc28056bf8ff0c0b0a7c0ebdb32789529ea25826588fbd9491
3
+ size 3055
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"'": 1, "(": 2, ")": 3, "*": 4, ".": 5, "/": 6, "1": 7, "2": 8, "=": 9, "C": 10, "E": 11, "N": 12, "Q": 13, "R": 14, "Z": 15, "`": 16, "a": 17, "b": 18, "c": 19, "d": 20, "e": 21, "f": 22, "g": 23, "h": 24, "i": 25, "j": 26, "k": 27, "l": 28, "m": 29, "n": 30, "o": 31, "p": 32, "q": 33, "r": 34, "s": 35, "t": 36, "u": 37, "v": 38, "w": 39, "x": 40, "y": 41, "z": 42, "{": 43, "|": 0, "}": 45, "~": 46, "§": 47, "«": 48, "®": 49, "°": 50, "±": 51, "·": 52, "»": 53, "×": 54, "ß": 55, "æ": 56, "ç": 57, "ð": 58, "ø": 59, "þ": 60, "đ": 61, "ħ": 62, "ı": 63, "ł": 64, "œ": 65, "ǀ": 66, "ǃ": 67, "ɑ": 68, "ə": 69, "ɨ": 70, "ʉ": 71, "ʔ": 72, "ʻ": 73, "ʼ": 74, "ʽ": 75, "ʾ": 76, "ʿ": 77, "ː": 78, "α": 79, "β": 80, "γ": 81, "δ": 82, "ε": 83, "ζ": 84, "η": 85, "θ": 86, "ι": 87, "κ": 88, "λ": 89, "μ": 90, "ν": 91, "ο": 92, "π": 93, "ρ": 94, "ς": 95, "σ": 96, "τ": 97, "υ": 98, "φ": 99, "χ": 100, "ψ": 101, "ω": 102, "а": 103, "г": 104, "е": 105, "з": 106, "и": 107, "к": 108, "м": 109, "н": 110, "о": 111, "п": 112, "р": 113, "ц": 114, "ч": 115, "э": 116, "я": 117, "є": 118, "і": 119, "ј": 120, "џ": 121, "ҫ": 122, "ӌ": 123, "գ": 124, "զ": 125, "ا": 126, "ب": 127, "ة": 128, "د": 129, "ر": 130, "ل": 131, "م": 132, "ن": 133, "و": 134, "ي": 135, "ᄀ": 136, "ᄆ": 137, "ᄉ": 138, "ᄌ": 139, "ᅡ": 140, "ᅢ": 141, "ᅥ": 142, "ᅩ": 143, "ᅵ": 144, "ᆨ": 145, "ᆷ": 146, "ᆸ": 147, "ᆼ": 148, "ቀ": 149, "ከ": 150, "ወ": 151, "ደ": 152, "ጀ": 153, "‐": 154, "–": 155, "—": 156, "―": 157, "’": 158, "„": 159, "†": 160, "′": 161, "‹": 162, "›": 163, "⁄": 164, "₽": 165, "→": 166, "↔": 167, "∅": 168, "∆": 169, "∈": 170, "−": 171, "∞": 172, "∨": 173, "∼": 174, "≥": 175, "⊨": 176, "⋅": 177, "─": 178, "☉": 179, "ⱅ": 180, "ⱎ": 181, "い": 182, "う": 183, "た": 184, "つ": 185, "の": 186, "ひ": 187, "へ": 188, "ま": 189, "む": 190, "め": 191, "も": 192, "や": 193, "三": 194, "丹": 195, "乃": 196, "京": 197, "保": 198, "北": 199, "厳": 200, "宇": 201, "扬": 202, "文": 203, "星": 204, "术": 205, "杜": 206, "津": 207, "牡": 208, "甌": 209, "美": 210, "西": 211, "貴": 212, "青": 213, "馆": 214, "ꝑ": 215, "[UNK]": 215, "[PAD]": 216}
wandb/debug-internal.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220129_215451-1vipdbow/logs/debug-internal.log
wandb/debug.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220129_215451-1vipdbow/logs/debug.log
wandb/latest-run ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220129_215451-1vipdbow
wandb/run-20220129_131141-h6nhqm30/files/conda-environment.yaml ADDED
File without changes
wandb/run-20220129_131141-h6nhqm30/files/config.yaml ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220129_131141-h6nhqm30/files/output.log ADDED
@@ -0,0 +1,9003 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+
6
+
7
+
8
+
9
+
10
+
11
+
12
+
13
+
14
+
15
+
16
+
17
+
18
+
19
+
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+
78
+
79
+
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+
96
+
97
+
98
+
99
+
100
+ 0%|▋ | 100/21520 [04:25<9:53:42, 1.66s/it]
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+ 1%|█▍ | 199/21520 [08:51<10:08:31, 1.71s/it]
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+
289
+
290
+
291
+
292
+
293
+
294
+
295
+
296
+ 1%|██▏ | 300/21520 [13:20<9:42:10, 1.65s/it]
297
+
298
+
299
+
300
+
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+
382
+
383
+
384
+
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+ 2%|██▉ | 399/21520 [17:44<9:49:47, 1.68s/it]
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+
416
+
417
+
418
+
419
+
420
+
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
469
+
470
+
471
+
472
+
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+
492
+
493
+ 2%|███▋ | 500/21520 [22:14<9:36:18, 1.65s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
494
+ ***** Running Evaluation *****
495
+ Num examples = 1839
496
+ Batch size = 64
497
+ {'loss': 5.4101, 'learning_rate': 2.3239999999999998e-05, 'epoch': 0.12}
498
+
499
+
500
+
501
+
502
+
503
+
504
+
505
+
506
+
507
+
508
+
509
+
510
+
511
+
512
+
513
+
514
+
515
+
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+
525
+
526
+ Configuration saved in ./checkpoint-500/config.json
527
+ {'eval_loss': 5.053680896759033, 'eval_wer': 1.0, 'eval_runtime': 62.0508, 'eval_samples_per_second': 29.637, 'eval_steps_per_second': 0.467, 'epoch': 0.12}
528
+ Model weights saved in ./checkpoint-500/pytorch_model.bin
529
+ Configuration saved in ./checkpoint-500/preprocessor_config.json
530
+ Configuration saved in ./preprocessor_config.json
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+
541
+
542
+
543
+
544
+
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+
571
+
572
+
573
+
574
+
575
+
576
+
577
+
578
+
579
+
580
+
581
+
582
+
583
+
584
+
585
+
586
+
587
+
588
+
589
+
590
+
591
+
592
+
593
+
594
+
595
+
596
+
597
+
598
+
599
+
600
+
601
+
602
+
603
+
604
+
605
+
606
+
607
+
608
+
609
+
610
+
611
+
612
+
613
+
614
+
615
+
616
+
617
+
618
+
619
+
620
+
621
+
622
+
623
+
624
+
625
+
626
+
627
+ 3%|████▍ | 600/21520 [28:28<9:27:51, 1.63s/it]
628
+
629
+
630
+
631
+
632
+
633
+
634
+
635
+
636
+
637
+
638
+
639
+
640
+
641
+
642
+
643
+
644
+
645
+
646
+
647
+
648
+
649
+
650
+
651
+
652
+
653
+
654
+
655
+
656
+
657
+
658
+
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+
667
+
668
+
669
+
670
+
671
+
672
+
673
+
674
+
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+
683
+
684
+
685
+
686
+
687
+
688
+
689
+
690
+
691
+
692
+
693
+
694
+
695
+
696
+
697
+
698
+
699
+
700
+
701
+
702
+
703
+
704
+
705
+
706
+
707
+
708
+
709
+
710
+
711
+
712
+
713
+
714
+
715
+
716
+
717
+
718
+
719
+
720
+
721
+
722
+
723
+
724
+
725
+ 3%|█████▏ | 700/21520 [32:54<9:54:50, 1.71s/it]
726
+
727
+
728
+
729
+
730
+
731
+
732
+
733
+
734
+
735
+
736
+
737
+
738
+
739
+
740
+
741
+
742
+
743
+
744
+
745
+
746
+
747
+
748
+
749
+
750
+
751
+
752
+
753
+
754
+
755
+
756
+
757
+
758
+
759
+
760
+
761
+
762
+
763
+
764
+
765
+
766
+
767
+
768
+
769
+
770
+
771
+
772
+
773
+
774
+
775
+
776
+
777
+
778
+
779
+
780
+
781
+
782
+
783
+
784
+
785
+
786
+
787
+
788
+
789
+
790
+
791
+
792
+
793
+
794
+
795
+
796
+
797
+
798
+
799
+
800
+
801
+
802
+
803
+
804
+
805
+
806
+
807
+
808
+
809
+
810
+
811
+
812
+
813
+
814
+
815
+
816
+
817
+
818
+
819
+
820
+
821
+
822
+
823
+ 4%|█████▉ | 799/21520 [37:16<9:45:40, 1.70s/it]
824
+
825
+
826
+
827
+
828
+
829
+
830
+
831
+
832
+
833
+
834
+
835
+
836
+
837
+
838
+
839
+
840
+
841
+
842
+
843
+
844
+
845
+
846
+
847
+
848
+
849
+
850
+
851
+
852
+
853
+
854
+
855
+
856
+
857
+
858
+
859
+
860
+
861
+
862
+
863
+
864
+
865
+
866
+
867
+
868
+
869
+
870
+
871
+
872
+
873
+
874
+
875
+
876
+
877
+
878
+
879
+
880
+
881
+
882
+
883
+
884
+
885
+
886
+
887
+
888
+
889
+
890
+
891
+
892
+
893
+
894
+
895
+
896
+
897
+
898
+
899
+
900
+
901
+
902
+
903
+
904
+
905
+
906
+
907
+
908
+
909
+
910
+
911
+
912
+
913
+
914
+
915
+
916
+
917
+
918
+
919
+
920
+
921
+
922
+ 4%|██████▋ | 899/21520 [41:40<9:40:54, 1.69s/it]
923
+
924
+
925
+
926
+
927
+
928
+
929
+
930
+
931
+
932
+
933
+
934
+
935
+
936
+
937
+
938
+
939
+
940
+
941
+
942
+
943
+
944
+
945
+
946
+
947
+
948
+
949
+
950
+
951
+
952
+
953
+
954
+
955
+
956
+
957
+
958
+
959
+
960
+
961
+
962
+
963
+
964
+
965
+
966
+
967
+
968
+
969
+
970
+
971
+
972
+
973
+
974
+
975
+
976
+
977
+
978
+
979
+
980
+
981
+
982
+
983
+
984
+
985
+
986
+
987
+
988
+
989
+
990
+
991
+
992
+
993
+
994
+
995
+
996
+
997
+
998
+
999
+
1000
+
1001
+
1002
+
1003
+
1004
+
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+
1013
+
1014
+
1015
+
1016
+
1017
+
1018
+
1019
+
1020
+
1021
+ 5%|███████▍ | 999/21520 [46:03<9:58:48, 1.75s/it]
1022
+ 5%|███████▎ | 1000/21520 [46:05<9:34:03, 1.68s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
1023
+ ***** Running Evaluation *****
1024
+ Num examples = 1839
1025
+ Batch size = 64
1026
+
1027
+
1028
+
1029
+
1030
+
1031
+
1032
+
1033
+
1034
+
1035
+
1036
+
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+
1044
+
1045
+
1046
+
1047
+
1048
+
1049
+
1050
+
1051
+
1052
+
1053
+ 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:55<00:00, 1.82s/it]
1054
+
1055
+ Configuration saved in ./checkpoint-1000/config.json
1056
+ Model weights saved in ./checkpoint-1000/pytorch_model.bin
1057
+ Configuration saved in ./checkpoint-1000/preprocessor_config.json
1058
+ Configuration saved in ./preprocessor_config.json
1059
+
1060
+
1061
+
1062
+
1063
+
1064
+
1065
+
1066
+
1067
+
1068
+
1069
+
1070
+
1071
+
1072
+
1073
+
1074
+
1075
+
1076
+
1077
+
1078
+
1079
+
1080
+
1081
+
1082
+
1083
+
1084
+
1085
+
1086
+
1087
+
1088
+
1089
+
1090
+
1091
+
1092
+
1093
+
1094
+
1095
+
1096
+
1097
+
1098
+
1099
+
1100
+
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+
1107
+
1108
+
1109
+
1110
+
1111
+
1112
+
1113
+
1114
+
1115
+
1116
+
1117
+
1118
+
1119
+
1120
+
1121
+
1122
+
1123
+
1124
+
1125
+
1126
+
1127
+
1128
+
1129
+
1130
+
1131
+
1132
+
1133
+
1134
+
1135
+
1136
+
1137
+
1138
+
1139
+
1140
+
1141
+
1142
+
1143
+
1144
+
1145
+
1146
+
1147
+
1148
+
1149
+
1150
+
1151
+
1152
+
1153
+
1154
+
1155
+ 5%|████████ | 1099/21520 [53:19<9:33:07, 1.68s/it]
1156
+
1157
+
1158
+
1159
+
1160
+
1161
+
1162
+
1163
+
1164
+
1165
+
1166
+
1167
+
1168
+
1169
+
1170
+
1171
+
1172
+
1173
+
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+
1180
+
1181
+
1182
+
1183
+
1184
+
1185
+
1186
+
1187
+
1188
+
1189
+
1190
+
1191
+
1192
+
1193
+
1194
+
1195
+
1196
+
1197
+
1198
+
1199
+
1200
+
1201
+
1202
+
1203
+
1204
+
1205
+
1206
+
1207
+
1208
+
1209
+
1210
+
1211
+
1212
+
1213
+
1214
+
1215
+
1216
+
1217
+
1218
+
1219
+
1220
+
1221
+
1222
+
1223
+
1224
+
1225
+
1226
+
1227
+
1228
+
1229
+
1230
+
1231
+
1232
+
1233
+
1234
+
1235
+
1236
+
1237
+
1238
+
1239
+
1240
+
1241
+
1242
+
1243
+
1244
+
1245
+
1246
+
1247
+
1248
+
1249
+
1250
+
1251
+
1252
+
1253
+
1254
+
1255
+ 6%|████████▊ | 1199/21520 [57:45<9:59:52, 1.77s/it]
1256
+
1257
+
1258
+
1259
+
1260
+
1261
+
1262
+
1263
+
1264
+
1265
+
1266
+
1267
+
1268
+
1269
+
1270
+
1271
+
1272
+
1273
+
1274
+
1275
+
1276
+
1277
+
1278
+
1279
+
1280
+
1281
+
1282
+
1283
+
1284
+
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+
1291
+
1292
+
1293
+
1294
+
1295
+
1296
+
1297
+
1298
+
1299
+
1300
+
1301
+
1302
+
1303
+
1304
+
1305
+
1306
+
1307
+
1308
+
1309
+
1310
+
1311
+
1312
+
1313
+
1314
+
1315
+
1316
+
1317
+
1318
+
1319
+
1320
+
1321
+
1322
+
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+
1329
+
1330
+
1331
+
1332
+
1333
+
1334
+
1335
+
1336
+
1337
+
1338
+
1339
+
1340
+
1341
+
1342
+
1343
+
1344
+
1345
+
1346
+
1347
+
1348
+
1349
+
1350
+
1351
+
1352
+ 6%|█████████▍ | 1299/21520 [1:02:09<9:15:12, 1.65s/it]
1353
+
1354
+
1355
+
1356
+
1357
+
1358
+
1359
+
1360
+
1361
+
1362
+
1363
+
1364
+
1365
+
1366
+
1367
+
1368
+
1369
+
1370
+
1371
+
1372
+
1373
+
1374
+
1375
+
1376
+
1377
+
1378
+
1379
+
1380
+
1381
+
1382
+
1383
+
1384
+
1385
+
1386
+
1387
+
1388
+
1389
+
1390
+
1391
+
1392
+
1393
+
1394
+
1395
+
1396
+
1397
+
1398
+
1399
+
1400
+
1401
+
1402
+
1403
+
1404
+
1405
+
1406
+
1407
+
1408
+
1409
+
1410
+
1411
+
1412
+
1413
+
1414
+
1415
+
1416
+
1417
+
1418
+
1419
+
1420
+
1421
+
1422
+
1423
+
1424
+
1425
+
1426
+
1427
+
1428
+
1429
+
1430
+
1431
+
1432
+
1433
+
1434
+
1435
+
1436
+
1437
+
1438
+
1439
+
1440
+
1441
+
1442
+
1443
+
1444
+
1445
+
1446
+
1447
+
1448
+
1449
+
1450
+
1451
+ 7%|██████████▏ | 1399/21520 [1:06:35<9:28:45, 1.70s/it]
1452
+
1453
+
1454
+
1455
+
1456
+
1457
+
1458
+
1459
+
1460
+
1461
+
1462
+
1463
+
1464
+
1465
+
1466
+
1467
+
1468
+
1469
+
1470
+
1471
+
1472
+
1473
+
1474
+
1475
+
1476
+
1477
+
1478
+
1479
+
1480
+
1481
+
1482
+
1483
+
1484
+
1485
+
1486
+
1487
+
1488
+
1489
+
1490
+
1491
+
1492
+
1493
+
1494
+
1495
+
1496
+
1497
+
1498
+
1499
+
1500
+
1501
+
1502
+
1503
+
1504
+
1505
+
1506
+
1507
+
1508
+
1509
+
1510
+
1511
+
1512
+
1513
+
1514
+
1515
+
1516
+
1517
+
1518
+
1519
+
1520
+
1521
+
1522
+
1523
+
1524
+
1525
+
1526
+
1527
+
1528
+
1529
+
1530
+
1531
+
1532
+
1533
+
1534
+
1535
+
1536
+
1537
+
1538
+
1539
+
1540
+
1541
+
1542
+
1543
+
1544
+
1545
+
1546
+
1547
+
1548
+
1549
+ 7%|██████████▊ | 1499/21520 [1:10:59<9:13:59, 1.66s/it]
1550
+ 7%|██████████▊ | 1500/21520 [1:11:00<8:58:38, 1.61s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
1551
+ ***** Running Evaluation *****
1552
+ Num examples = 1839
1553
+ Batch size = 64
1554
+
1555
+
1556
+
1557
+
1558
+
1559
+
1560
+
1561
+
1562
+
1563
+
1564
+
1565
+
1566
+
1567
+
1568
+
1569
+
1570
+
1571
+
1572
+
1573
+
1574
+
1575
+
1576
+
1577
+
1578
+
1579
+
1580
+
1581
+
1582
+ Configuration saved in ./checkpoint-1500/config.json
1583
+ {'eval_loss': 1.2048969268798828, 'eval_wer': 0.8062855432505238, 'eval_runtime': 64.3059, 'eval_samples_per_second': 28.598, 'eval_steps_per_second': 0.451, 'epoch': 0.35}
1584
+ Model weights saved in ./checkpoint-1500/pytorch_model.bin
1585
+ Configuration saved in ./checkpoint-1500/preprocessor_config.json
1586
+ Configuration saved in ./preprocessor_config.json
1587
+ Adding files tracked by Git LFS: ['wandb/run-20220129_131141-h6nhqm30/run-h6nhqm30.wandb']. This may take a bit of time if the files are large.
1588
+ 01/29/2022 14:25:13 - WARNING - huggingface_hub.repository - Adding files tracked by Git LFS: ['wandb/run-20220129_131141-h6nhqm30/run-h6nhqm30.wandb']. This may take a bit of time if the files are large.
1589
+
1590
+
1591
+
1592
+
1593
+
1594
+
1595
+
1596
+
1597
+
1598
+
1599
+
1600
+
1601
+
1602
+
1603
+
1604
+
1605
+
1606
+
1607
+
1608
+
1609
+
1610
+
1611
+
1612
+
1613
+
1614
+
1615
+
1616
+
1617
+
1618
+
1619
+
1620
+
1621
+
1622
+
1623
+
1624
+
1625
+
1626
+
1627
+
1628
+
1629
+
1630
+
1631
+
1632
+
1633
+
1634
+
1635
+
1636
+
1637
+
1638
+
1639
+
1640
+
1641
+
1642
+
1643
+
1644
+
1645
+
1646
+
1647
+
1648
+
1649
+
1650
+
1651
+
1652
+
1653
+
1654
+
1655
+
1656
+
1657
+
1658
+
1659
+
1660
+
1661
+
1662
+
1663
+
1664
+
1665
+
1666
+
1667
+
1668
+
1669
+
1670
+
1671
+
1672
+
1673
+
1674
+
1675
+
1676
+
1677
+
1678
+
1679
+
1680
+
1681
+
1682
+
1683
+
1684
+
1685
+ 7%|███████████▌ | 1599/21520 [1:18:18<9:12:21, 1.66s/it]
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+
1692
+
1693
+
1694
+
1695
+
1696
+
1697
+
1698
+
1699
+
1700
+
1701
+
1702
+
1703
+
1704
+
1705
+
1706
+
1707
+
1708
+
1709
+
1710
+
1711
+
1712
+
1713
+
1714
+
1715
+
1716
+
1717
+
1718
+
1719
+
1720
+
1721
+
1722
+
1723
+
1724
+
1725
+
1726
+
1727
+
1728
+
1729
+
1730
+
1731
+
1732
+
1733
+
1734
+
1735
+
1736
+
1737
+
1738
+
1739
+
1740
+
1741
+
1742
+
1743
+
1744
+
1745
+
1746
+
1747
+
1748
+
1749
+
1750
+
1751
+
1752
+
1753
+
1754
+
1755
+
1756
+
1757
+
1758
+
1759
+
1760
+
1761
+
1762
+
1763
+
1764
+
1765
+
1766
+
1767
+
1768
+
1769
+
1770
+
1771
+
1772
+
1773
+
1774
+
1775
+
1776
+
1777
+
1778
+
1779
+
1780
+
1781
+
1782
+
1783
+
1784
+ 8%|████████████▎ | 1700/21520 [1:22:44<8:47:54, 1.60s/it]
1785
+
1786
+
1787
+
1788
+
1789
+
1790
+
1791
+
1792
+
1793
+
1794
+
1795
+
1796
+
1797
+
1798
+
1799
+
1800
+
1801
+
1802
+
1803
+
1804
+
1805
+
1806
+
1807
+
1808
+
1809
+
1810
+
1811
+
1812
+
1813
+
1814
+
1815
+
1816
+
1817
+
1818
+
1819
+
1820
+
1821
+
1822
+
1823
+
1824
+
1825
+
1826
+
1827
+
1828
+
1829
+
1830
+
1831
+
1832
+
1833
+
1834
+
1835
+
1836
+
1837
+
1838
+
1839
+
1840
+
1841
+
1842
+
1843
+
1844
+
1845
+
1846
+
1847
+
1848
+
1849
+
1850
+
1851
+
1852
+
1853
+
1854
+
1855
+
1856
+
1857
+
1858
+
1859
+
1860
+
1861
+
1862
+
1863
+
1864
+
1865
+
1866
+
1867
+
1868
+
1869
+
1870
+
1871
+
1872
+
1873
+
1874
+
1875
+
1876
+
1877
+
1878
+
1879
+
1880
+
1881
+ 8%|█████████████ | 1799/21520 [1:27:06<9:14:58, 1.69s/it]
1882
+
1883
+
1884
+
1885
+
1886
+
1887
+
1888
+
1889
+
1890
+
1891
+
1892
+
1893
+
1894
+
1895
+
1896
+
1897
+
1898
+
1899
+
1900
+
1901
+
1902
+
1903
+
1904
+
1905
+
1906
+
1907
+
1908
+
1909
+
1910
+
1911
+
1912
+
1913
+
1914
+
1915
+
1916
+
1917
+
1918
+
1919
+
1920
+
1921
+
1922
+
1923
+
1924
+
1925
+
1926
+
1927
+
1928
+
1929
+
1930
+
1931
+
1932
+
1933
+
1934
+
1935
+
1936
+
1937
+
1938
+
1939
+
1940
+
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+
1949
+
1950
+
1951
+
1952
+
1953
+
1954
+
1955
+
1956
+
1957
+
1958
+
1959
+
1960
+
1961
+
1962
+
1963
+
1964
+
1965
+
1966
+
1967
+
1968
+
1969
+
1970
+
1971
+
1972
+
1973
+
1974
+
1975
+
1976
+
1977
+
1978
+
1979
+
1980
+ 9%|█████████████▊ | 1900/21520 [1:31:34<8:50:40, 1.62s/it]
1981
+
1982
+
1983
+
1984
+
1985
+
1986
+
1987
+
1988
+
1989
+
1990
+
1991
+
1992
+
1993
+
1994
+
1995
+
1996
+
1997
+
1998
+
1999
+
2000
+
2001
+
2002
+
2003
+
2004
+
2005
+
2006
+
2007
+
2008
+
2009
+
2010
+
2011
+
2012
+
2013
+
2014
+
2015
+
2016
+
2017
+
2018
+
2019
+
2020
+
2021
+
2022
+
2023
+
2024
+
2025
+
2026
+
2027
+
2028
+
2029
+
2030
+
2031
+
2032
+
2033
+
2034
+
2035
+
2036
+
2037
+
2038
+
2039
+
2040
+
2041
+
2042
+
2043
+
2044
+
2045
+
2046
+
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+
2053
+
2054
+
2055
+
2056
+
2057
+
2058
+
2059
+
2060
+
2061
+
2062
+
2063
+
2064
+
2065
+
2066
+
2067
+
2068
+
2069
+
2070
+
2071
+
2072
+
2073
+
2074
+
2075
+
2076
+
2077
+
2078
+ 9%|██████████████▍ | 2000/21520 [1:35:55<8:46:26, 1.62s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
2079
+ ***** Running Evaluation *****
2080
+ Num examples = 1839
2081
+ Batch size = 64
2082
+ {'loss': 1.5498, 'learning_rate': 6.826923076923076e-05, 'epoch': 0.46}
2083
+
2084
+
2085
+
2086
+
2087
+
2088
+
2089
+
2090
+
2091
+
2092
+
2093
+
2094
+
2095
+
2096
+
2097
+
2098
+
2099
+
2100
+
2101
+
2102
+
2103
+
2104
+
2105
+
2106
+
2107
+
2108
+
2109
+
2110
+ 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:55<00:00, 1.81s/it]
2111
+
2112
+ Configuration saved in ./checkpoint-2000/config.json
2113
+ Model weights saved in ./checkpoint-2000/pytorch_model.bin
2114
+ Configuration saved in ./checkpoint-2000/preprocessor_config.json
2115
+ Configuration saved in ./preprocessor_config.json
2116
+ Deleting older checkpoint [checkpoint-500] due to args.save_total_limit
2117
+
2118
+
2119
+
2120
+
2121
+
2122
+
2123
+
2124
+
2125
+
2126
+
2127
+
2128
+
2129
+
2130
+
2131
+
2132
+
2133
+
2134
+
2135
+
2136
+
2137
+
2138
+
2139
+
2140
+
2141
+
2142
+
2143
+
2144
+
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+
2151
+
2152
+
2153
+
2154
+
2155
+
2156
+
2157
+
2158
+
2159
+
2160
+
2161
+
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+
2168
+
2169
+
2170
+
2171
+
2172
+
2173
+
2174
+
2175
+
2176
+
2177
+
2178
+
2179
+
2180
+
2181
+
2182
+
2183
+
2184
+
2185
+
2186
+
2187
+
2188
+
2189
+
2190
+
2191
+
2192
+
2193
+
2194
+
2195
+
2196
+
2197
+
2198
+
2199
+
2200
+
2201
+
2202
+
2203
+
2204
+
2205
+
2206
+
2207
+
2208
+
2209
+
2210
+
2211
+
2212
+
2213
+ 10%|███████████████▏ | 2100/21520 [1:43:15<8:45:13, 1.62s/it]
2214
+
2215
+
2216
+
2217
+
2218
+
2219
+
2220
+
2221
+
2222
+
2223
+
2224
+
2225
+
2226
+
2227
+
2228
+
2229
+
2230
+
2231
+
2232
+
2233
+
2234
+
2235
+
2236
+
2237
+
2238
+
2239
+
2240
+
2241
+
2242
+
2243
+
2244
+
2245
+
2246
+
2247
+
2248
+
2249
+
2250
+
2251
+
2252
+
2253
+
2254
+
2255
+
2256
+
2257
+
2258
+
2259
+
2260
+
2261
+
2262
+
2263
+
2264
+
2265
+
2266
+
2267
+
2268
+
2269
+
2270
+
2271
+
2272
+
2273
+
2274
+
2275
+
2276
+
2277
+
2278
+
2279
+
2280
+
2281
+
2282
+
2283
+
2284
+
2285
+
2286
+
2287
+
2288
+
2289
+
2290
+
2291
+
2292
+
2293
+
2294
+
2295
+
2296
+
2297
+
2298
+
2299
+
2300
+
2301
+
2302
+
2303
+
2304
+
2305
+
2306
+
2307
+
2308
+
2309
+
2310
+
2311
+
2312
+ 10%|███████████████▉ | 2200/21520 [1:47:39<8:48:39, 1.64s/it]
2313
+
2314
+
2315
+
2316
+
2317
+
2318
+
2319
+
2320
+
2321
+
2322
+
2323
+
2324
+
2325
+
2326
+
2327
+
2328
+
2329
+
2330
+
2331
+
2332
+
2333
+
2334
+
2335
+
2336
+
2337
+
2338
+
2339
+
2340
+
2341
+
2342
+
2343
+
2344
+
2345
+
2346
+
2347
+
2348
+
2349
+
2350
+
2351
+
2352
+
2353
+
2354
+
2355
+
2356
+
2357
+
2358
+
2359
+
2360
+
2361
+
2362
+
2363
+
2364
+
2365
+
2366
+
2367
+
2368
+
2369
+
2370
+
2371
+
2372
+
2373
+
2374
+
2375
+
2376
+
2377
+
2378
+
2379
+
2380
+
2381
+
2382
+
2383
+
2384
+
2385
+
2386
+
2387
+
2388
+
2389
+
2390
+
2391
+
2392
+
2393
+
2394
+
2395
+
2396
+
2397
+
2398
+
2399
+
2400
+
2401
+
2402
+
2403
+
2404
+
2405
+
2406
+
2407
+
2408
+
2409
+
2410
+ 11%|████████████████▋ | 2299/21520 [1:52:02<8:59:39, 1.68s/it]
2411
+
2412
+
2413
+
2414
+
2415
+
2416
+
2417
+
2418
+
2419
+
2420
+
2421
+
2422
+
2423
+
2424
+
2425
+
2426
+
2427
+
2428
+
2429
+
2430
+
2431
+
2432
+
2433
+
2434
+
2435
+
2436
+
2437
+
2438
+
2439
+
2440
+
2441
+
2442
+
2443
+
2444
+
2445
+
2446
+
2447
+
2448
+
2449
+
2450
+
2451
+
2452
+
2453
+
2454
+
2455
+
2456
+
2457
+
2458
+
2459
+
2460
+
2461
+
2462
+
2463
+
2464
+
2465
+
2466
+
2467
+
2468
+
2469
+
2470
+
2471
+
2472
+
2473
+
2474
+
2475
+
2476
+
2477
+
2478
+
2479
+
2480
+
2481
+
2482
+
2483
+
2484
+
2485
+
2486
+
2487
+
2488
+
2489
+
2490
+
2491
+
2492
+
2493
+
2494
+
2495
+
2496
+
2497
+
2498
+
2499
+
2500
+
2501
+
2502
+
2503
+
2504
+
2505
+
2506
+
2507
+
2508
+
2509
+ 11%|█████████████████▍ | 2400/21520 [1:56:27<8:53:22, 1.67s/it]
2510
+
2511
+
2512
+
2513
+
2514
+
2515
+
2516
+
2517
+
2518
+
2519
+
2520
+
2521
+
2522
+
2523
+
2524
+
2525
+
2526
+
2527
+
2528
+
2529
+
2530
+
2531
+
2532
+
2533
+
2534
+
2535
+
2536
+
2537
+
2538
+
2539
+
2540
+
2541
+
2542
+
2543
+
2544
+
2545
+
2546
+
2547
+
2548
+
2549
+
2550
+
2551
+
2552
+
2553
+
2554
+
2555
+
2556
+
2557
+
2558
+
2559
+
2560
+
2561
+
2562
+
2563
+
2564
+
2565
+
2566
+
2567
+
2568
+
2569
+
2570
+
2571
+
2572
+
2573
+
2574
+
2575
+
2576
+
2577
+
2578
+
2579
+
2580
+
2581
+
2582
+
2583
+
2584
+
2585
+
2586
+
2587
+
2588
+
2589
+
2590
+
2591
+
2592
+
2593
+
2594
+
2595
+
2596
+
2597
+
2598
+
2599
+
2600
+
2601
+
2602
+
2603
+
2604
+
2605
+
2606
+
2607
+ 12%|██████████████████ | 2499/21520 [2:00:52<9:23:31, 1.78s/it]
2608
+ 12%|██████████████████ | 2500/21520 [2:00:53<8:59:59, 1.70s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
2609
+ ***** Running Evaluation *****
2610
+ Num examples = 1839
2611
+ Batch size = 64
2612
+
2613
+
2614
+
2615
+
2616
+
2617
+
2618
+
2619
+
2620
+
2621
+
2622
+
2623
+
2624
+
2625
+
2626
+
2627
+
2628
+
2629
+
2630
+
2631
+
2632
+
2633
+
2634
+
2635
+
2636
+
2637
+
2638
+
2639
+
2640
+
2641
+ Configuration saved in ./checkpoint-2500/config.json
2642
+ {'eval_loss': 0.4956221282482147, 'eval_wer': 0.5256510026938043, 'eval_runtime': 65.2452, 'eval_samples_per_second': 28.186, 'eval_steps_per_second': 0.444, 'epoch': 0.58}
2643
+ Model weights saved in ./checkpoint-2500/pytorch_model.bin
2644
+ Configuration saved in ./checkpoint-2500/preprocessor_config.json
2645
+ Configuration saved in ./preprocessor_config.json
2646
+ Deleting older checkpoint [checkpoint-1000] due to args.save_total_limit
2647
+
2648
+
2649
+
2650
+
2651
+
2652
+
2653
+
2654
+
2655
+
2656
+
2657
+
2658
+
2659
+
2660
+
2661
+
2662
+
2663
+
2664
+
2665
+
2666
+
2667
+
2668
+
2669
+
2670
+
2671
+
2672
+
2673
+
2674
+
2675
+
2676
+
2677
+
2678
+
2679
+
2680
+
2681
+
2682
+
2683
+
2684
+
2685
+
2686
+
2687
+
2688
+
2689
+
2690
+
2691
+
2692
+
2693
+
2694
+
2695
+
2696
+
2697
+
2698
+
2699
+
2700
+
2701
+
2702
+
2703
+
2704
+
2705
+
2706
+
2707
+
2708
+
2709
+
2710
+
2711
+
2712
+
2713
+
2714
+
2715
+
2716
+
2717
+
2718
+
2719
+
2720
+
2721
+
2722
+
2723
+
2724
+
2725
+
2726
+
2727
+
2728
+
2729
+
2730
+
2731
+
2732
+
2733
+
2734
+
2735
+
2736
+
2737
+
2738
+
2739
+
2740
+
2741
+
2742
+
2743
+
2744
+ 12%|██████████████████▊ | 2600/21520 [2:08:12<8:38:33, 1.64s/it]
2745
+
2746
+
2747
+
2748
+
2749
+
2750
+
2751
+
2752
+
2753
+
2754
+
2755
+
2756
+
2757
+
2758
+
2759
+
2760
+
2761
+
2762
+
2763
+
2764
+
2765
+
2766
+
2767
+
2768
+
2769
+
2770
+
2771
+
2772
+
2773
+
2774
+
2775
+
2776
+
2777
+
2778
+
2779
+
2780
+
2781
+
2782
+
2783
+
2784
+
2785
+
2786
+
2787
+
2788
+
2789
+
2790
+
2791
+
2792
+
2793
+
2794
+
2795
+
2796
+
2797
+
2798
+
2799
+
2800
+
2801
+
2802
+
2803
+
2804
+
2805
+
2806
+
2807
+
2808
+
2809
+
2810
+
2811
+
2812
+
2813
+
2814
+
2815
+
2816
+
2817
+
2818
+
2819
+
2820
+
2821
+
2822
+
2823
+
2824
+
2825
+
2826
+
2827
+
2828
+
2829
+
2830
+
2831
+
2832
+
2833
+
2834
+
2835
+
2836
+
2837
+
2838
+
2839
+
2840
+
2841
+ 13%|███████████████████▌ | 2699/21520 [2:12:34<9:20:50, 1.79s/it]
2842
+
2843
+
2844
+
2845
+
2846
+
2847
+
2848
+
2849
+
2850
+
2851
+
2852
+
2853
+
2854
+
2855
+
2856
+
2857
+
2858
+
2859
+
2860
+
2861
+
2862
+
2863
+
2864
+
2865
+
2866
+
2867
+
2868
+
2869
+
2870
+
2871
+
2872
+
2873
+
2874
+
2875
+
2876
+
2877
+
2878
+
2879
+
2880
+
2881
+
2882
+
2883
+
2884
+
2885
+
2886
+
2887
+
2888
+
2889
+
2890
+
2891
+
2892
+
2893
+
2894
+
2895
+
2896
+
2897
+
2898
+
2899
+
2900
+
2901
+
2902
+
2903
+
2904
+
2905
+
2906
+
2907
+
2908
+
2909
+
2910
+
2911
+
2912
+
2913
+
2914
+
2915
+
2916
+
2917
+
2918
+
2919
+
2920
+
2921
+
2922
+
2923
+
2924
+
2925
+
2926
+
2927
+
2928
+
2929
+
2930
+
2931
+
2932
+
2933
+
2934
+
2935
+
2936
+
2937
+
2938
+
2939
+
2940
+ 13%|████████████████████▎ | 2799/21520 [2:16:58<8:44:37, 1.68s/it]
2941
+
2942
+
2943
+
2944
+
2945
+
2946
+
2947
+
2948
+
2949
+
2950
+
2951
+
2952
+
2953
+
2954
+
2955
+
2956
+
2957
+
2958
+
2959
+
2960
+
2961
+
2962
+
2963
+
2964
+
2965
+
2966
+
2967
+
2968
+
2969
+
2970
+
2971
+
2972
+
2973
+
2974
+
2975
+
2976
+
2977
+
2978
+
2979
+
2980
+
2981
+
2982
+
2983
+
2984
+
2985
+
2986
+
2987
+
2988
+
2989
+
2990
+
2991
+
2992
+
2993
+
2994
+
2995
+
2996
+
2997
+
2998
+
2999
+
3000
+
3001
+
3002
+
3003
+
3004
+
3005
+
3006
+
3007
+
3008
+
3009
+
3010
+
3011
+
3012
+
3013
+
3014
+
3015
+
3016
+
3017
+
3018
+
3019
+
3020
+
3021
+
3022
+
3023
+
3024
+
3025
+
3026
+
3027
+
3028
+
3029
+
3030
+
3031
+
3032
+
3033
+
3034
+
3035
+
3036
+
3037
+
3038
+
3039
+
3040
+ 13%|█████████████████████ | 2900/21520 [2:21:21<8:26:00, 1.63s/it]
3041
+
3042
+
3043
+
3044
+
3045
+
3046
+
3047
+
3048
+
3049
+
3050
+
3051
+
3052
+
3053
+
3054
+
3055
+
3056
+
3057
+
3058
+
3059
+
3060
+
3061
+
3062
+
3063
+
3064
+
3065
+
3066
+
3067
+
3068
+
3069
+
3070
+
3071
+
3072
+
3073
+
3074
+
3075
+
3076
+
3077
+
3078
+
3079
+
3080
+
3081
+
3082
+
3083
+
3084
+
3085
+
3086
+
3087
+
3088
+
3089
+
3090
+
3091
+
3092
+
3093
+
3094
+
3095
+
3096
+
3097
+
3098
+
3099
+
3100
+
3101
+
3102
+
3103
+
3104
+
3105
+
3106
+
3107
+
3108
+
3109
+
3110
+
3111
+
3112
+
3113
+
3114
+
3115
+
3116
+
3117
+
3118
+
3119
+
3120
+
3121
+
3122
+
3123
+
3124
+
3125
+
3126
+
3127
+
3128
+
3129
+
3130
+
3131
+
3132
+
3133
+
3134
+
3135
+
3136
+
3137
+
3138
+ 14%|█████████████████████▋ | 2998/21520 [2:25:39<9:03:14, 1.76s/it]
3139
+ 14%|█████████████████████▋ | 3000/21520 [2:25:42<8:12:20, 1.60s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
3140
+ ***** Running Evaluation *****
3141
+ Num examples = 1839
3142
+ Batch size = 64
3143
+
3144
+
3145
+
3146
+
3147
+
3148
+
3149
+
3150
+
3151
+
3152
+
3153
+
3154
+
3155
+
3156
+
3157
+
3158
+
3159
+
3160
+
3161
+
3162
+
3163
+
3164
+
3165
+
3166
+
3167
+
3168
+
3169
+
3170
+
3171
+ 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:55<00:00, 1.82s/it]
3172
+
3173
+ Configuration saved in ./checkpoint-3000/config.json
3174
+ Model weights saved in ./checkpoint-3000/pytorch_model.bin
3175
+ Configuration saved in ./checkpoint-3000/preprocessor_config.json
3176
+ Configuration saved in ./preprocessor_config.json
3177
+ Deleting older checkpoint [checkpoint-1500] due to args.save_total_limit
3178
+
3179
+
3180
+
3181
+
3182
+
3183
+
3184
+
3185
+
3186
+
3187
+
3188
+
3189
+
3190
+
3191
+
3192
+
3193
+
3194
+
3195
+
3196
+
3197
+
3198
+
3199
+
3200
+
3201
+
3202
+
3203
+
3204
+
3205
+
3206
+
3207
+
3208
+
3209
+
3210
+
3211
+
3212
+
3213
+
3214
+
3215
+
3216
+
3217
+
3218
+
3219
+
3220
+
3221
+
3222
+
3223
+
3224
+
3225
+
3226
+
3227
+
3228
+
3229
+
3230
+
3231
+
3232
+
3233
+
3234
+
3235
+
3236
+
3237
+
3238
+
3239
+
3240
+
3241
+
3242
+
3243
+
3244
+
3245
+
3246
+
3247
+
3248
+
3249
+
3250
+
3251
+
3252
+
3253
+
3254
+
3255
+
3256
+
3257
+
3258
+
3259
+
3260
+
3261
+
3262
+
3263
+
3264
+
3265
+
3266
+
3267
+
3268
+
3269
+
3270
+
3271
+
3272
+
3273
+
3274
+
3275
+ 14%|██████████████████████▍ | 3100/21520 [2:33:03<8:22:01, 1.64s/it]
3276
+
3277
+
3278
+
3279
+
3280
+
3281
+
3282
+
3283
+
3284
+
3285
+
3286
+
3287
+
3288
+
3289
+
3290
+
3291
+
3292
+
3293
+
3294
+
3295
+
3296
+
3297
+
3298
+
3299
+
3300
+
3301
+
3302
+
3303
+
3304
+
3305
+
3306
+
3307
+
3308
+
3309
+
3310
+
3311
+
3312
+
3313
+
3314
+
3315
+
3316
+
3317
+
3318
+
3319
+
3320
+
3321
+
3322
+
3323
+
3324
+
3325
+
3326
+
3327
+
3328
+
3329
+
3330
+
3331
+
3332
+
3333
+
3334
+
3335
+
3336
+
3337
+
3338
+
3339
+
3340
+
3341
+
3342
+
3343
+
3344
+
3345
+
3346
+
3347
+
3348
+
3349
+
3350
+
3351
+
3352
+
3353
+
3354
+
3355
+
3356
+
3357
+
3358
+
3359
+
3360
+
3361
+
3362
+
3363
+
3364
+
3365
+
3366
+
3367
+
3368
+
3369
+
3370
+
3371
+
3372
+
3373
+ 15%|███████████████████████▏ | 3199/21520 [2:37:24<8:25:51, 1.66s/it]
3374
+
3375
+
3376
+
3377
+
3378
+
3379
+
3380
+
3381
+
3382
+
3383
+
3384
+
3385
+
3386
+
3387
+
3388
+
3389
+
3390
+
3391
+
3392
+
3393
+
3394
+
3395
+
3396
+
3397
+
3398
+
3399
+
3400
+
3401
+
3402
+
3403
+
3404
+
3405
+
3406
+
3407
+
3408
+
3409
+
3410
+
3411
+
3412
+
3413
+
3414
+
3415
+
3416
+
3417
+
3418
+
3419
+
3420
+
3421
+
3422
+
3423
+
3424
+
3425
+
3426
+
3427
+
3428
+
3429
+
3430
+
3431
+
3432
+
3433
+
3434
+
3435
+
3436
+
3437
+
3438
+
3439
+
3440
+
3441
+
3442
+
3443
+
3444
+
3445
+
3446
+
3447
+
3448
+
3449
+
3450
+
3451
+
3452
+
3453
+
3454
+
3455
+
3456
+
3457
+
3458
+
3459
+
3460
+
3461
+
3462
+
3463
+
3464
+
3465
+
3466
+
3467
+
3468
+
3469
+
3470
+
3471
+
3472
+
3473
+ 15%|███████████████████████▉ | 3300/21520 [2:41:52<8:21:22, 1.65s/it]
3474
+
3475
+
3476
+
3477
+
3478
+
3479
+
3480
+
3481
+
3482
+
3483
+
3484
+
3485
+
3486
+
3487
+
3488
+
3489
+
3490
+
3491
+
3492
+
3493
+
3494
+
3495
+
3496
+
3497
+
3498
+
3499
+
3500
+
3501
+
3502
+
3503
+
3504
+
3505
+
3506
+
3507
+
3508
+
3509
+
3510
+
3511
+
3512
+
3513
+
3514
+
3515
+
3516
+
3517
+
3518
+
3519
+
3520
+
3521
+
3522
+
3523
+
3524
+
3525
+
3526
+
3527
+
3528
+
3529
+
3530
+
3531
+
3532
+
3533
+
3534
+
3535
+
3536
+
3537
+
3538
+
3539
+
3540
+
3541
+
3542
+
3543
+
3544
+
3545
+
3546
+
3547
+
3548
+
3549
+
3550
+
3551
+
3552
+
3553
+
3554
+
3555
+
3556
+
3557
+
3558
+
3559
+
3560
+
3561
+
3562
+
3563
+
3564
+
3565
+
3566
+
3567
+
3568
+
3569
+
3570
+ 16%|████████████████████████▋ | 3398/21520 [2:46:11<8:41:39, 1.73s/it]
3571
+
3572
+
3573
+
3574
+
3575
+
3576
+
3577
+
3578
+
3579
+
3580
+
3581
+
3582
+
3583
+
3584
+
3585
+
3586
+
3587
+
3588
+
3589
+
3590
+
3591
+
3592
+
3593
+
3594
+
3595
+
3596
+
3597
+
3598
+
3599
+
3600
+
3601
+
3602
+
3603
+
3604
+
3605
+
3606
+
3607
+
3608
+
3609
+
3610
+
3611
+
3612
+
3613
+
3614
+
3615
+
3616
+
3617
+
3618
+
3619
+
3620
+
3621
+
3622
+
3623
+
3624
+
3625
+
3626
+
3627
+
3628
+
3629
+
3630
+
3631
+
3632
+
3633
+
3634
+
3635
+
3636
+
3637
+
3638
+
3639
+
3640
+
3641
+
3642
+
3643
+
3644
+
3645
+
3646
+
3647
+
3648
+
3649
+
3650
+
3651
+
3652
+
3653
+
3654
+
3655
+
3656
+
3657
+
3658
+
3659
+
3660
+
3661
+
3662
+
3663
+
3664
+
3665
+
3666
+
3667
+
3668
+
3669
+ 16%|█████████████████████████▎ | 3499/21520 [2:50:38<8:32:27, 1.71s/it]
3670
+ 16%|█████████████████████████▎ | 3500/21520 [2:50:39<8:11:10, 1.64s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
3671
+ ***** Running Evaluation *****
3672
+ Num examples = 1839
3673
+ Batch size = 64
3674
+
3675
+
3676
+
3677
+
3678
+
3679
+
3680
+
3681
+
3682
+
3683
+
3684
+
3685
+
3686
+
3687
+
3688
+
3689
+
3690
+
3691
+
3692
+
3693
+
3694
+
3695
+
3696
+
3697
+
3698
+
3699
+
3700
+
3701
+
3702
+ Configuration saved in ./checkpoint-3500/config.json
3703
+ {'eval_loss': 0.38118353486061096, 'eval_wer': 0.4635139179886262, 'eval_runtime': 65.5254, 'eval_samples_per_second': 28.065, 'eval_steps_per_second': 0.443, 'epoch': 0.81}
3704
+ Model weights saved in ./checkpoint-3500/pytorch_model.bin
3705
+ Configuration saved in ./checkpoint-3500/preprocessor_config.json
3706
+ Configuration saved in ./preprocessor_config.json
3707
+ Deleting older checkpoint [checkpoint-2000] due to args.save_total_limit
3708
+
3709
+
3710
+
3711
+
3712
+
3713
+
3714
+
3715
+
3716
+
3717
+
3718
+
3719
+
3720
+
3721
+
3722
+
3723
+
3724
+
3725
+
3726
+
3727
+
3728
+
3729
+
3730
+
3731
+
3732
+
3733
+
3734
+
3735
+
3736
+
3737
+
3738
+
3739
+
3740
+
3741
+
3742
+
3743
+
3744
+
3745
+
3746
+
3747
+
3748
+
3749
+
3750
+
3751
+
3752
+
3753
+
3754
+
3755
+
3756
+
3757
+
3758
+
3759
+
3760
+
3761
+
3762
+
3763
+
3764
+
3765
+
3766
+
3767
+
3768
+
3769
+
3770
+
3771
+
3772
+
3773
+
3774
+
3775
+
3776
+
3777
+
3778
+
3779
+
3780
+
3781
+
3782
+
3783
+
3784
+
3785
+
3786
+
3787
+
3788
+
3789
+
3790
+
3791
+
3792
+
3793
+
3794
+
3795
+
3796
+
3797
+
3798
+
3799
+
3800
+
3801
+
3802
+
3803
+
3804
+
3805
+ 17%|██████████████████████████ | 3600/21520 [2:58:00<8:11:02, 1.64s/it]
3806
+
3807
+
3808
+
3809
+
3810
+
3811
+
3812
+
3813
+
3814
+
3815
+
3816
+
3817
+
3818
+
3819
+
3820
+
3821
+
3822
+
3823
+
3824
+
3825
+
3826
+
3827
+
3828
+
3829
+
3830
+
3831
+
3832
+
3833
+
3834
+
3835
+
3836
+
3837
+
3838
+
3839
+
3840
+
3841
+
3842
+
3843
+
3844
+
3845
+
3846
+
3847
+
3848
+
3849
+
3850
+
3851
+
3852
+
3853
+
3854
+
3855
+
3856
+
3857
+
3858
+
3859
+
3860
+
3861
+
3862
+
3863
+
3864
+
3865
+
3866
+
3867
+
3868
+
3869
+
3870
+
3871
+
3872
+
3873
+
3874
+
3875
+
3876
+
3877
+
3878
+
3879
+
3880
+
3881
+
3882
+
3883
+
3884
+
3885
+
3886
+
3887
+
3888
+
3889
+
3890
+
3891
+
3892
+
3893
+
3894
+
3895
+
3896
+
3897
+
3898
+
3899
+
3900
+
3901
+
3902
+
3903
+ 17%|██████████████████████████▊ | 3699/21520 [3:02:22<8:11:14, 1.65s/it]
3904
+
3905
+
3906
+
3907
+
3908
+
3909
+
3910
+
3911
+
3912
+
3913
+
3914
+
3915
+
3916
+
3917
+
3918
+
3919
+
3920
+
3921
+
3922
+
3923
+
3924
+
3925
+
3926
+
3927
+
3928
+
3929
+
3930
+
3931
+
3932
+
3933
+
3934
+
3935
+
3936
+
3937
+
3938
+
3939
+
3940
+
3941
+
3942
+
3943
+
3944
+
3945
+
3946
+
3947
+
3948
+
3949
+
3950
+
3951
+
3952
+
3953
+
3954
+
3955
+
3956
+
3957
+
3958
+
3959
+
3960
+
3961
+
3962
+
3963
+
3964
+
3965
+
3966
+
3967
+
3968
+
3969
+
3970
+
3971
+
3972
+
3973
+
3974
+
3975
+
3976
+
3977
+
3978
+
3979
+
3980
+
3981
+
3982
+
3983
+
3984
+
3985
+
3986
+
3987
+
3988
+
3989
+
3990
+
3991
+
3992
+
3993
+
3994
+
3995
+
3996
+
3997
+
3998
+
3999
+
4000
+
4001
+
4002
+
4003
+ 18%|███████████████████████████▌ | 3800/21520 [3:06:46<7:57:07, 1.62s/it]
4004
+
4005
+
4006
+
4007
+
4008
+
4009
+
4010
+
4011
+
4012
+
4013
+
4014
+
4015
+
4016
+
4017
+
4018
+
4019
+
4020
+
4021
+
4022
+
4023
+
4024
+
4025
+
4026
+
4027
+
4028
+
4029
+
4030
+
4031
+
4032
+
4033
+
4034
+
4035
+
4036
+
4037
+
4038
+
4039
+
4040
+
4041
+
4042
+
4043
+
4044
+
4045
+
4046
+
4047
+
4048
+
4049
+
4050
+
4051
+
4052
+
4053
+
4054
+
4055
+
4056
+
4057
+
4058
+
4059
+
4060
+
4061
+
4062
+
4063
+
4064
+
4065
+
4066
+
4067
+
4068
+
4069
+
4070
+
4071
+
4072
+
4073
+
4074
+
4075
+
4076
+
4077
+
4078
+
4079
+
4080
+
4081
+
4082
+
4083
+
4084
+
4085
+
4086
+
4087
+
4088
+
4089
+
4090
+
4091
+
4092
+
4093
+
4094
+
4095
+
4096
+
4097
+
4098
+
4099
+
4100
+ 18%|████████████████████████████▎ | 3898/21520 [3:11:08<8:29:00, 1.73s/it]
4101
+
4102
+
4103
+
4104
+
4105
+
4106
+
4107
+
4108
+
4109
+
4110
+
4111
+
4112
+
4113
+
4114
+
4115
+
4116
+
4117
+
4118
+
4119
+
4120
+
4121
+
4122
+
4123
+
4124
+
4125
+
4126
+
4127
+
4128
+
4129
+
4130
+
4131
+
4132
+
4133
+
4134
+
4135
+
4136
+
4137
+
4138
+
4139
+
4140
+
4141
+
4142
+
4143
+
4144
+
4145
+
4146
+
4147
+
4148
+
4149
+
4150
+
4151
+
4152
+
4153
+
4154
+
4155
+
4156
+
4157
+
4158
+
4159
+
4160
+
4161
+
4162
+
4163
+
4164
+
4165
+
4166
+
4167
+
4168
+
4169
+
4170
+
4171
+
4172
+
4173
+
4174
+
4175
+
4176
+
4177
+
4178
+
4179
+
4180
+
4181
+
4182
+
4183
+
4184
+
4185
+
4186
+
4187
+
4188
+
4189
+
4190
+
4191
+
4192
+
4193
+
4194
+
4195
+
4196
+
4197
+
4198
+ 19%|████████████████████████████▉ | 4000/21520 [3:15:36<7:50:45, 1.61s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
4199
+ ***** Running Evaluation *****
4200
+ Num examples = 1839
4201
+ Batch size = 64
4202
+ {'loss': 1.2001, 'learning_rate': 6.128321678321677e-05, 'epoch': 0.93}
4203
+
4204
+
4205
+
4206
+
4207
+
4208
+
4209
+
4210
+
4211
+
4212
+
4213
+
4214
+
4215
+
4216
+
4217
+
4218
+
4219
+
4220
+
4221
+
4222
+
4223
+
4224
+
4225
+
4226
+
4227
+
4228
+
4229
+
4230
+
4231
+ 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:55<00:00, 1.79s/it]
4232
+
4233
+ Configuration saved in ./checkpoint-4000/config.json
4234
+ Model weights saved in ./checkpoint-4000/pytorch_model.bin
4235
+ Configuration saved in ./checkpoint-4000/preprocessor_config.json
4236
+ Configuration saved in ./preprocessor_config.json
4237
+ Deleting older checkpoint [checkpoint-2500] due to args.save_total_limit
4238
+
4239
+
4240
+
4241
+
4242
+
4243
+
4244
+
4245
+
4246
+
4247
+
4248
+
4249
+
4250
+
4251
+
4252
+
4253
+
4254
+
4255
+
4256
+
4257
+
4258
+
4259
+
4260
+
4261
+
4262
+
4263
+
4264
+
4265
+
4266
+
4267
+
4268
+
4269
+
4270
+
4271
+
4272
+
4273
+
4274
+
4275
+
4276
+
4277
+
4278
+
4279
+
4280
+
4281
+
4282
+
4283
+
4284
+
4285
+
4286
+
4287
+
4288
+
4289
+
4290
+
4291
+
4292
+
4293
+
4294
+
4295
+
4296
+
4297
+
4298
+
4299
+
4300
+
4301
+
4302
+
4303
+
4304
+
4305
+
4306
+
4307
+
4308
+
4309
+
4310
+
4311
+
4312
+
4313
+
4314
+
4315
+
4316
+
4317
+
4318
+
4319
+
4320
+
4321
+
4322
+
4323
+
4324
+
4325
+
4326
+
4327
+
4328
+
4329
+
4330
+
4331
+
4332
+
4333
+
4334
+
4335
+ 19%|█████████████████████████████▋ | 4100/21520 [3:22:57<7:45:28, 1.60s/it]
4336
+
4337
+
4338
+
4339
+
4340
+
4341
+
4342
+
4343
+
4344
+
4345
+
4346
+
4347
+
4348
+
4349
+
4350
+
4351
+
4352
+
4353
+
4354
+
4355
+
4356
+
4357
+
4358
+
4359
+
4360
+
4361
+
4362
+
4363
+
4364
+
4365
+
4366
+
4367
+
4368
+
4369
+
4370
+
4371
+
4372
+
4373
+
4374
+
4375
+
4376
+
4377
+
4378
+
4379
+
4380
+
4381
+
4382
+
4383
+
4384
+
4385
+
4386
+
4387
+
4388
+
4389
+
4390
+
4391
+
4392
+
4393
+
4394
+
4395
+
4396
+
4397
+
4398
+
4399
+
4400
+
4401
+
4402
+
4403
+
4404
+
4405
+
4406
+
4407
+
4408
+
4409
+
4410
+
4411
+
4412
+
4413
+
4414
+
4415
+
4416
+
4417
+
4418
+
4419
+
4420
+
4421
+
4422
+
4423
+
4424
+
4425
+
4426
+
4427
+
4428
+
4429
+
4430
+
4431
+
4432
+
4433
+ 20%|██████████████████████████████▍ | 4199/21520 [3:27:18<7:58:53, 1.66s/it]
4434
+
4435
+
4436
+
4437
+
4438
+
4439
+
4440
+
4441
+
4442
+
4443
+
4444
+
4445
+
4446
+
4447
+
4448
+
4449
+
4450
+
4451
+
4452
+
4453
+
4454
+
4455
+
4456
+
4457
+
4458
+
4459
+
4460
+
4461
+
4462
+
4463
+
4464
+
4465
+
4466
+
4467
+
4468
+
4469
+
4470
+
4471
+
4472
+
4473
+
4474
+
4475
+
4476
+
4477
+
4478
+
4479
+
4480
+
4481
+
4482
+
4483
+
4484
+
4485
+
4486
+
4487
+
4488
+
4489
+
4490
+
4491
+
4492
+
4493
+
4494
+
4495
+
4496
+
4497
+
4498
+
4499
+
4500
+
4501
+
4502
+
4503
+
4504
+
4505
+
4506
+
4507
+
4508
+
4509
+
4510
+
4511
+
4512
+
4513
+
4514
+
4515
+
4516
+
4517
+
4518
+
4519
+
4520
+
4521
+
4522
+
4523
+
4524
+
4525
+
4526
+
4527
+
4528
+
4529
+
4530
+
4531
+
4532
+ 20%|███████████████████████████████▏ | 4299/21520 [3:31:42<8:00:50, 1.68s/it]
4533
+
4534
+
4535
+
4536
+
4537
+
4538
+
4539
+
4540
+
4541
+
4542
+
4543
+
4544
+
4545
+
4546
+
4547
+
4548
+
4549
+
4550
+
4551
+
4552
+
4553
+
4554
+
4555
+
4556
+
4557
+
4558
+
4559
+
4560
+
4561
+
4562
+
4563
+
4564
+
4565
+
4566
+
4567
+
4568
+
4569
+
4570
+
4571
+
4572
+
4573
+
4574
+
4575
+
4576
+
4577
+
4578
+
4579
+
4580
+
4581
+
4582
+
4583
+
4584
+
4585
+
4586
+
4587
+
4588
+
4589
+
4590
+
4591
+
4592
+
4593
+
4594
+
4595
+
4596
+
4597
+
4598
+
4599
+
4600
+
4601
+
4602
+
4603
+
4604
+
4605
+
4606
+
4607
+
4608
+
4609
+
4610
+
4611
+
4612
+
4613
+
4614
+
4615
+
4616
+
4617
+
4618
+
4619
+
4620
+
4621
+
4622
+
4623
+
4624
+
4625
+
4626
+
4627
+
4628
+
4629
+
4630
+
4631
+
4632
+ 20%|███████████████████████████████▉ | 4400/21520 [3:36:10<9:34:20, 2.01s/it]
4633
+
4634
+
4635
+
4636
+
4637
+
4638
+
4639
+
4640
+
4641
+
4642
+
4643
+
4644
+
4645
+
4646
+
4647
+
4648
+
4649
+
4650
+
4651
+
4652
+
4653
+
4654
+
4655
+
4656
+
4657
+
4658
+
4659
+
4660
+
4661
+
4662
+
4663
+
4664
+
4665
+
4666
+
4667
+
4668
+
4669
+
4670
+
4671
+
4672
+
4673
+
4674
+
4675
+
4676
+
4677
+
4678
+
4679
+
4680
+
4681
+
4682
+
4683
+
4684
+
4685
+
4686
+
4687
+
4688
+
4689
+
4690
+
4691
+
4692
+
4693
+
4694
+
4695
+
4696
+
4697
+
4698
+
4699
+
4700
+
4701
+
4702
+
4703
+
4704
+
4705
+
4706
+
4707
+
4708
+
4709
+
4710
+
4711
+
4712
+
4713
+
4714
+
4715
+
4716
+
4717
+
4718
+
4719
+
4720
+
4721
+
4722
+
4723
+
4724
+
4725
+
4726
+
4727
+
4728
+
4729
+ 21%|████████████████████████████████▌ | 4500/21520 [3:40:32<9:18:48, 1.97s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
4730
+ ***** Running Evaluation *****
4731
+ Num examples = 1839
4732
+ Batch size = 64
4733
+ {'loss': 1.1671, 'learning_rate': 5.953496503496503e-05, 'epoch': 1.05}
4734
+
4735
+
4736
+
4737
+
4738
+
4739
+
4740
+
4741
+
4742
+
4743
+
4744
+
4745
+
4746
+
4747
+
4748
+
4749
+
4750
+
4751
+
4752
+
4753
+
4754
+
4755
+
4756
+
4757
+
4758
+
4759
+
4760
+
4761
+ 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:56<00:00, 1.81s/it]
4762
+
4763
+ Configuration saved in ./checkpoint-4500/config.json
4764
+ Model weights saved in ./checkpoint-4500/pytorch_model.bin
4765
+ Configuration saved in ./checkpoint-4500/preprocessor_config.json
4766
+ Configuration saved in ./preprocessor_config.json
4767
+ Deleting older checkpoint [checkpoint-3000] due to args.save_total_limit
4768
+
4769
+
4770
+
4771
+
4772
+
4773
+
4774
+
4775
+
4776
+
4777
+
4778
+
4779
+
4780
+
4781
+
4782
+
4783
+
4784
+
4785
+
4786
+
4787
+
4788
+
4789
+
4790
+
4791
+
4792
+
4793
+
4794
+
4795
+
4796
+
4797
+
4798
+
4799
+
4800
+
4801
+
4802
+
4803
+
4804
+
4805
+
4806
+
4807
+
4808
+
4809
+
4810
+
4811
+
4812
+
4813
+
4814
+
4815
+
4816
+
4817
+
4818
+
4819
+
4820
+
4821
+
4822
+
4823
+
4824
+
4825
+
4826
+
4827
+
4828
+
4829
+
4830
+
4831
+
4832
+
4833
+
4834
+
4835
+
4836
+
4837
+
4838
+
4839
+
4840
+
4841
+
4842
+
4843
+
4844
+
4845
+
4846
+
4847
+
4848
+
4849
+
4850
+
4851
+
4852
+
4853
+
4854
+
4855
+
4856
+
4857
+
4858
+
4859
+
4860
+
4861
+
4862
+
4863
+ 21%|█████████████████████████████████▎ | 4599/21520 [3:47:51<9:07:25, 1.94s/it]
4864
+
4865
+
4866
+
4867
+
4868
+
4869
+
4870
+
4871
+
4872
+
4873
+
4874
+
4875
+
4876
+
4877
+
4878
+
4879
+
4880
+
4881
+
4882
+
4883
+
4884
+
4885
+
4886
+
4887
+
4888
+
4889
+
4890
+
4891
+
4892
+
4893
+
4894
+
4895
+
4896
+
4897
+
4898
+
4899
+
4900
+
4901
+
4902
+
4903
+
4904
+
4905
+
4906
+
4907
+
4908
+
4909
+
4910
+
4911
+
4912
+
4913
+
4914
+
4915
+
4916
+
4917
+
4918
+
4919
+
4920
+
4921
+
4922
+
4923
+
4924
+
4925
+
4926
+
4927
+
4928
+
4929
+
4930
+
4931
+
4932
+
4933
+
4934
+
4935
+
4936
+
4937
+
4938
+
4939
+
4940
+
4941
+
4942
+
4943
+
4944
+
4945
+
4946
+
4947
+
4948
+
4949
+
4950
+
4951
+
4952
+
4953
+
4954
+
4955
+
4956
+
4957
+
4958
+
4959
+
4960
+
4961
+
4962
+
4963
+ 22%|██████████████████████████████████ | 4700/21520 [3:52:17<9:25:30, 2.02s/it]
4964
+
4965
+
4966
+
4967
+
4968
+
4969
+
4970
+
4971
+
4972
+
4973
+
4974
+
4975
+
4976
+
4977
+
4978
+
4979
+
4980
+
4981
+
4982
+
4983
+
4984
+
4985
+
4986
+
4987
+
4988
+
4989
+
4990
+
4991
+
4992
+
4993
+
4994
+
4995
+
4996
+
4997
+
4998
+
4999
+
5000
+
5001
+
5002
+
5003
+
5004
+
5005
+
5006
+
5007
+
5008
+
5009
+
5010
+
5011
+
5012
+
5013
+
5014
+
5015
+
5016
+
5017
+
5018
+
5019
+
5020
+
5021
+
5022
+
5023
+
5024
+
5025
+
5026
+
5027
+
5028
+
5029
+
5030
+
5031
+
5032
+
5033
+
5034
+
5035
+
5036
+
5037
+
5038
+
5039
+
5040
+
5041
+
5042
+
5043
+
5044
+
5045
+
5046
+
5047
+
5048
+
5049
+
5050
+
5051
+
5052
+
5053
+
5054
+
5055
+
5056
+
5057
+
5058
+
5059
+
5060
+
5061
+
5062
+ 22%|██████████████████████████████████▊ | 4800/21520 [3:56:42<9:16:50, 2.00s/it]
5063
+
5064
+
5065
+
5066
+
5067
+
5068
+
5069
+
5070
+
5071
+
5072
+
5073
+
5074
+
5075
+
5076
+
5077
+
5078
+
5079
+
5080
+
5081
+
5082
+
5083
+
5084
+
5085
+
5086
+
5087
+
5088
+
5089
+
5090
+
5091
+
5092
+
5093
+
5094
+
5095
+
5096
+
5097
+
5098
+
5099
+
5100
+
5101
+
5102
+
5103
+
5104
+
5105
+
5106
+
5107
+
5108
+
5109
+
5110
+
5111
+
5112
+
5113
+
5114
+
5115
+
5116
+
5117
+
5118
+
5119
+
5120
+
5121
+
5122
+
5123
+
5124
+
5125
+
5126
+
5127
+
5128
+
5129
+
5130
+
5131
+
5132
+
5133
+
5134
+
5135
+
5136
+
5137
+
5138
+
5139
+
5140
+
5141
+
5142
+
5143
+
5144
+
5145
+
5146
+
5147
+
5148
+
5149
+
5150
+
5151
+
5152
+
5153
+
5154
+
5155
+
5156
+
5157
+
5158
+
5159
+
5160
+
5161
+ 23%|███████████████████████████████████▌ | 4900/21520 [4:01:06<9:15:05, 2.00s/it]
5162
+
5163
+
5164
+
5165
+
5166
+
5167
+
5168
+
5169
+
5170
+
5171
+
5172
+
5173
+
5174
+
5175
+
5176
+
5177
+
5178
+
5179
+
5180
+
5181
+
5182
+
5183
+
5184
+
5185
+
5186
+
5187
+
5188
+
5189
+
5190
+
5191
+
5192
+
5193
+
5194
+
5195
+
5196
+
5197
+
5198
+
5199
+
5200
+
5201
+
5202
+
5203
+
5204
+
5205
+
5206
+
5207
+
5208
+
5209
+
5210
+
5211
+
5212
+
5213
+
5214
+
5215
+
5216
+
5217
+
5218
+
5219
+
5220
+
5221
+
5222
+
5223
+
5224
+
5225
+
5226
+
5227
+
5228
+
5229
+
5230
+
5231
+
5232
+
5233
+
5234
+
5235
+
5236
+
5237
+
5238
+
5239
+
5240
+
5241
+
5242
+
5243
+
5244
+
5245
+
5246
+
5247
+
5248
+
5249
+
5250
+
5251
+
5252
+
5253
+
5254
+
5255
+
5256
+
5257
+
5258
+
5259
+ 23%|████████████████████████████████████▏ | 5000/21520 [4:05:30<8:56:08, 1.95s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
5260
+ ***** Running Evaluation *****
5261
+ Num examples = 1839
5262
+ Batch size = 64
5263
+ {'loss': 1.1599, 'learning_rate': 5.779020979020979e-05, 'epoch': 1.16}
5264
+
5265
+
5266
+
5267
+
5268
+
5269
+
5270
+
5271
+
5272
+
5273
+
5274
+
5275
+
5276
+
5277
+
5278
+
5279
+
5280
+
5281
+
5282
+
5283
+
5284
+
5285
+
5286
+
5287
+
5288
+
5289
+
5290
+
5291
+
5292
+ Configuration saved in ./checkpoint-5000/config.json
5293
+ {'eval_loss': 0.3355213701725006, 'eval_wer': 0.4330439988027537, 'eval_runtime': 63.7849, 'eval_samples_per_second': 28.831, 'eval_steps_per_second': 0.455, 'epoch': 1.16}
5294
+ Model weights saved in ./checkpoint-5000/pytorch_model.bin
5295
+ Configuration saved in ./checkpoint-5000/preprocessor_config.json
5296
+ Configuration saved in ./preprocessor_config.json
5297
+ Deleting older checkpoint [checkpoint-3500] due to args.save_total_limit
5298
+
5299
+
5300
+
5301
+
5302
+
5303
+
5304
+
5305
+
5306
+
5307
+
5308
+
5309
+
5310
+
5311
+
5312
+
5313
+
5314
+
5315
+
5316
+
5317
+
5318
+
5319
+
5320
+
5321
+
5322
+
5323
+
5324
+
5325
+
5326
+
5327
+
5328
+
5329
+
5330
+
5331
+
5332
+
5333
+
5334
+
5335
+
5336
+
5337
+
5338
+
5339
+
5340
+
5341
+
5342
+
5343
+
5344
+
5345
+
5346
+
5347
+
5348
+
5349
+
5350
+
5351
+
5352
+
5353
+
5354
+
5355
+
5356
+
5357
+
5358
+
5359
+
5360
+
5361
+
5362
+
5363
+
5364
+
5365
+
5366
+
5367
+
5368
+
5369
+
5370
+
5371
+
5372
+
5373
+
5374
+
5375
+
5376
+
5377
+
5378
+
5379
+
5380
+
5381
+
5382
+
5383
+
5384
+
5385
+
5386
+
5387
+
5388
+
5389
+
5390
+
5391
+
5392
+
5393
+
5394
+ 24%|████████████████████████████████████▉ | 5100/21520 [4:12:48<8:56:31, 1.96s/it]
5395
+
5396
+
5397
+
5398
+
5399
+
5400
+
5401
+
5402
+
5403
+
5404
+
5405
+
5406
+
5407
+
5408
+
5409
+
5410
+
5411
+
5412
+
5413
+
5414
+
5415
+
5416
+
5417
+
5418
+
5419
+
5420
+
5421
+
5422
+
5423
+
5424
+
5425
+
5426
+
5427
+
5428
+
5429
+
5430
+
5431
+
5432
+
5433
+
5434
+
5435
+
5436
+
5437
+
5438
+
5439
+
5440
+
5441
+
5442
+
5443
+
5444
+
5445
+
5446
+
5447
+
5448
+
5449
+
5450
+
5451
+
5452
+
5453
+
5454
+
5455
+
5456
+
5457
+
5458
+
5459
+
5460
+
5461
+
5462
+
5463
+
5464
+
5465
+
5466
+
5467
+
5468
+
5469
+
5470
+
5471
+
5472
+
5473
+
5474
+
5475
+
5476
+
5477
+
5478
+
5479
+
5480
+
5481
+
5482
+
5483
+
5484
+
5485
+
5486
+
5487
+
5488
+
5489
+
5490
+
5491
+
5492
+
5493
+
5494
+ 24%|█████████████████████████████████████▋ | 5200/21520 [4:17:12<9:28:46, 2.09s/it]
5495
+
5496
+
5497
+
5498
+
5499
+
5500
+
5501
+
5502
+
5503
+
5504
+
5505
+
5506
+
5507
+
5508
+
5509
+
5510
+
5511
+
5512
+
5513
+
5514
+
5515
+
5516
+
5517
+
5518
+
5519
+
5520
+
5521
+
5522
+
5523
+
5524
+
5525
+
5526
+
5527
+
5528
+
5529
+
5530
+
5531
+
5532
+
5533
+
5534
+
5535
+
5536
+
5537
+
5538
+
5539
+
5540
+
5541
+
5542
+
5543
+
5544
+
5545
+
5546
+
5547
+
5548
+
5549
+
5550
+
5551
+
5552
+
5553
+
5554
+
5555
+
5556
+
5557
+
5558
+
5559
+
5560
+
5561
+
5562
+
5563
+
5564
+
5565
+
5566
+
5567
+
5568
+
5569
+
5570
+
5571
+
5572
+
5573
+
5574
+
5575
+
5576
+
5577
+
5578
+
5579
+
5580
+
5581
+
5582
+
5583
+
5584
+
5585
+
5586
+
5587
+
5588
+
5589
+
5590
+
5591
+
5592
+ 25%|██████████████████████████████████████▍ | 5299/21520 [4:21:32<8:51:36, 1.97s/it]
5593
+
5594
+
5595
+
5596
+
5597
+
5598
+
5599
+
5600
+
5601
+
5602
+
5603
+
5604
+
5605
+
5606
+
5607
+
5608
+
5609
+
5610
+
5611
+
5612
+
5613
+
5614
+
5615
+
5616
+
5617
+
5618
+
5619
+
5620
+
5621
+
5622
+
5623
+
5624
+
5625
+
5626
+
5627
+
5628
+
5629
+
5630
+
5631
+
5632
+
5633
+
5634
+
5635
+
5636
+
5637
+
5638
+
5639
+
5640
+
5641
+
5642
+
5643
+
5644
+
5645
+
5646
+
5647
+
5648
+
5649
+
5650
+
5651
+
5652
+
5653
+
5654
+
5655
+
5656
+
5657
+
5658
+
5659
+
5660
+
5661
+
5662
+
5663
+
5664
+
5665
+
5666
+
5667
+
5668
+
5669
+
5670
+
5671
+
5672
+
5673
+
5674
+
5675
+
5676
+
5677
+
5678
+
5679
+
5680
+
5681
+
5682
+
5683
+
5684
+
5685
+
5686
+
5687
+
5688
+
5689
+
5690
+
5691
+ 25%|███████████████████████████████████████▏ | 5399/21520 [4:25:55<9:07:16, 2.04s/it]
5692
+
5693
+
5694
+
5695
+
5696
+
5697
+
5698
+
5699
+
5700
+
5701
+
5702
+
5703
+
5704
+
5705
+
5706
+
5707
+
5708
+
5709
+
5710
+
5711
+
5712
+
5713
+
5714
+
5715
+
5716
+
5717
+
5718
+
5719
+
5720
+
5721
+
5722
+
5723
+
5724
+
5725
+
5726
+
5727
+
5728
+
5729
+
5730
+
5731
+
5732
+
5733
+
5734
+
5735
+
5736
+
5737
+
5738
+
5739
+
5740
+
5741
+
5742
+
5743
+
5744
+
5745
+
5746
+
5747
+
5748
+
5749
+
5750
+
5751
+
5752
+
5753
+
5754
+
5755
+
5756
+
5757
+
5758
+
5759
+
5760
+
5761
+
5762
+
5763
+
5764
+
5765
+
5766
+
5767
+
5768
+
5769
+
5770
+
5771
+
5772
+
5773
+
5774
+
5775
+
5776
+
5777
+
5778
+
5779
+
5780
+
5781
+
5782
+
5783
+
5784
+
5785
+
5786
+
5787
+
5788
+
5789
+ 26%|███████████████████████████████████████▊ | 5500/21520 [4:30:20<8:58:27, 2.02s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
5790
+ ***** Running Evaluation *****
5791
+ Num examples = 1839
5792
+ Batch size = 64
5793
+ {'loss': 1.1568, 'learning_rate': 5.6041958041958036e-05, 'epoch': 1.28}
5794
+
5795
+
5796
+
5797
+
5798
+
5799
+
5800
+
5801
+
5802
+
5803
+
5804
+
5805
+
5806
+
5807
+
5808
+
5809
+
5810
+
5811
+
5812
+
5813
+
5814
+
5815
+
5816
+
5817
+
5818
+
5819
+
5820
+
5821
+
5822
+
5823
+ Configuration saved in ./checkpoint-5500/config.json
5824
+ {'eval_loss': 0.327897846698761, 'eval_wer': 0.42490272373540855, 'eval_runtime': 64.3828, 'eval_samples_per_second': 28.564, 'eval_steps_per_second': 0.45, 'epoch': 1.28}
5825
+ Model weights saved in ./checkpoint-5500/pytorch_model.bin
5826
+ Configuration saved in ./checkpoint-5500/preprocessor_config.json
5827
+ Configuration saved in ./preprocessor_config.json
5828
+ Deleting older checkpoint [checkpoint-4000] due to args.save_total_limit
5829
+
5830
+
5831
+
5832
+
5833
+
5834
+
5835
+
5836
+
5837
+
5838
+
5839
+
5840
+
5841
+
5842
+
5843
+
5844
+
5845
+
5846
+
5847
+
5848
+
5849
+
5850
+
5851
+
5852
+
5853
+
5854
+
5855
+
5856
+
5857
+
5858
+
5859
+
5860
+
5861
+
5862
+
5863
+
5864
+
5865
+
5866
+
5867
+
5868
+
5869
+
5870
+
5871
+
5872
+
5873
+
5874
+
5875
+
5876
+
5877
+
5878
+
5879
+
5880
+
5881
+
5882
+
5883
+
5884
+
5885
+
5886
+
5887
+
5888
+
5889
+
5890
+
5891
+
5892
+
5893
+
5894
+
5895
+
5896
+
5897
+
5898
+
5899
+
5900
+
5901
+
5902
+
5903
+
5904
+
5905
+
5906
+
5907
+
5908
+
5909
+
5910
+
5911
+
5912
+
5913
+
5914
+
5915
+
5916
+
5917
+
5918
+
5919
+
5920
+
5921
+
5922
+
5923
+
5924
+
5925
+ 26%|████████████████████████████████████████▌ | 5599/21520 [4:37:38<8:44:34, 1.98s/it]
5926
+
5927
+
5928
+
5929
+
5930
+
5931
+
5932
+
5933
+
5934
+
5935
+
5936
+
5937
+
5938
+
5939
+
5940
+
5941
+
5942
+
5943
+
5944
+
5945
+
5946
+
5947
+
5948
+
5949
+
5950
+
5951
+
5952
+
5953
+
5954
+
5955
+
5956
+
5957
+
5958
+
5959
+
5960
+
5961
+
5962
+
5963
+
5964
+
5965
+
5966
+
5967
+
5968
+
5969
+
5970
+
5971
+
5972
+
5973
+
5974
+
5975
+
5976
+
5977
+
5978
+
5979
+
5980
+
5981
+
5982
+
5983
+
5984
+
5985
+
5986
+
5987
+
5988
+
5989
+
5990
+
5991
+
5992
+
5993
+
5994
+
5995
+
5996
+
5997
+
5998
+
5999
+
6000
+
6001
+
6002
+
6003
+
6004
+
6005
+
6006
+
6007
+
6008
+
6009
+
6010
+
6011
+
6012
+
6013
+
6014
+
6015
+
6016
+
6017
+
6018
+
6019
+
6020
+
6021
+
6022
+
6023
+
6024
+ 26%|█████████████████████████████████████████▎ | 5699/21520 [4:42:01<8:33:59, 1.95s/it]
6025
+
6026
+
6027
+
6028
+
6029
+
6030
+
6031
+
6032
+
6033
+
6034
+
6035
+
6036
+
6037
+
6038
+
6039
+
6040
+
6041
+
6042
+
6043
+
6044
+
6045
+
6046
+
6047
+
6048
+
6049
+
6050
+
6051
+
6052
+
6053
+
6054
+
6055
+
6056
+
6057
+
6058
+
6059
+
6060
+
6061
+
6062
+
6063
+
6064
+
6065
+
6066
+
6067
+
6068
+
6069
+
6070
+
6071
+
6072
+
6073
+
6074
+
6075
+
6076
+
6077
+
6078
+
6079
+
6080
+
6081
+
6082
+
6083
+
6084
+
6085
+
6086
+
6087
+
6088
+
6089
+
6090
+
6091
+
6092
+
6093
+
6094
+
6095
+
6096
+
6097
+
6098
+
6099
+
6100
+
6101
+
6102
+
6103
+
6104
+
6105
+
6106
+
6107
+
6108
+
6109
+
6110
+
6111
+
6112
+
6113
+
6114
+
6115
+
6116
+
6117
+
6118
+
6119
+
6120
+
6121
+
6122
+
6123
+ 27%|██████████████████████████████████████████ | 5799/21520 [4:46:25<8:30:31, 1.95s/it]
6124
+
6125
+
6126
+
6127
+
6128
+
6129
+
6130
+
6131
+
6132
+
6133
+
6134
+
6135
+
6136
+
6137
+
6138
+
6139
+
6140
+
6141
+
6142
+
6143
+
6144
+
6145
+
6146
+
6147
+
6148
+
6149
+
6150
+
6151
+
6152
+
6153
+
6154
+
6155
+
6156
+
6157
+
6158
+
6159
+
6160
+
6161
+
6162
+
6163
+
6164
+
6165
+
6166
+
6167
+
6168
+
6169
+
6170
+
6171
+
6172
+
6173
+
6174
+
6175
+
6176
+
6177
+
6178
+
6179
+
6180
+
6181
+
6182
+
6183
+
6184
+
6185
+
6186
+
6187
+
6188
+
6189
+
6190
+
6191
+
6192
+
6193
+
6194
+
6195
+
6196
+
6197
+
6198
+
6199
+
6200
+
6201
+
6202
+
6203
+
6204
+
6205
+
6206
+
6207
+
6208
+
6209
+
6210
+
6211
+
6212
+
6213
+
6214
+
6215
+
6216
+
6217
+
6218
+
6219
+
6220
+
6221
+
6222
+ 27%|██████████████████████████████████████████▊ | 5899/21520 [4:50:48<8:50:56, 2.04s/it]
6223
+
6224
+
6225
+
6226
+
6227
+
6228
+
6229
+
6230
+
6231
+
6232
+
6233
+
6234
+
6235
+
6236
+
6237
+
6238
+
6239
+
6240
+
6241
+
6242
+
6243
+
6244
+
6245
+
6246
+
6247
+
6248
+
6249
+
6250
+
6251
+
6252
+
6253
+
6254
+
6255
+
6256
+
6257
+
6258
+
6259
+
6260
+
6261
+
6262
+
6263
+
6264
+
6265
+
6266
+
6267
+
6268
+
6269
+
6270
+
6271
+
6272
+
6273
+
6274
+
6275
+
6276
+
6277
+
6278
+
6279
+
6280
+
6281
+
6282
+
6283
+
6284
+
6285
+
6286
+
6287
+
6288
+
6289
+
6290
+
6291
+
6292
+
6293
+
6294
+
6295
+
6296
+
6297
+
6298
+
6299
+
6300
+
6301
+
6302
+
6303
+
6304
+
6305
+
6306
+
6307
+
6308
+
6309
+
6310
+
6311
+
6312
+
6313
+
6314
+
6315
+
6316
+
6317
+
6318
+
6319
+
6320
+
6321
+ 28%|███████████████████████████████████████████▍ | 6000/21520 [4:55:17<8:35:28, 1.99s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
6322
+ ***** Running Evaluation *****
6323
+ Num examples = 1839
6324
+ Batch size = 64
6325
+ {'loss': 1.0994, 'learning_rate': 5.4297202797202796e-05, 'epoch': 1.39}
6326
+
6327
+
6328
+
6329
+
6330
+
6331
+
6332
+
6333
+
6334
+
6335
+
6336
+
6337
+
6338
+
6339
+
6340
+
6341
+
6342
+
6343
+
6344
+
6345
+
6346
+
6347
+
6348
+
6349
+
6350
+
6351
+
6352
+
6353
+
6354
+
6355
+ Configuration saved in ./checkpoint-6000/config.json
6356
+ {'eval_loss': 0.318962037563324, 'eval_wer': 0.4240646513020054, 'eval_runtime': 65.8584, 'eval_samples_per_second': 27.924, 'eval_steps_per_second': 0.44, 'epoch': 1.39}
6357
+ Model weights saved in ./checkpoint-6000/pytorch_model.bin
6358
+ Configuration saved in ./checkpoint-6000/preprocessor_config.json
6359
+ Configuration saved in ./preprocessor_config.json
6360
+ Deleting older checkpoint [checkpoint-4500] due to args.save_total_limit
6361
+
6362
+
6363
+
6364
+
6365
+
6366
+
6367
+
6368
+
6369
+
6370
+
6371
+
6372
+
6373
+
6374
+
6375
+
6376
+
6377
+
6378
+
6379
+
6380
+
6381
+
6382
+
6383
+
6384
+
6385
+
6386
+
6387
+
6388
+
6389
+
6390
+
6391
+
6392
+
6393
+
6394
+
6395
+
6396
+
6397
+
6398
+
6399
+
6400
+
6401
+
6402
+
6403
+
6404
+
6405
+
6406
+
6407
+
6408
+
6409
+
6410
+
6411
+
6412
+
6413
+
6414
+
6415
+
6416
+
6417
+
6418
+
6419
+
6420
+
6421
+
6422
+
6423
+
6424
+
6425
+
6426
+
6427
+
6428
+
6429
+
6430
+
6431
+
6432
+
6433
+
6434
+
6435
+
6436
+
6437
+
6438
+
6439
+
6440
+
6441
+
6442
+
6443
+
6444
+
6445
+
6446
+
6447
+
6448
+
6449
+
6450
+
6451
+
6452
+
6453
+
6454
+
6455
+
6456
+ 28%|████████████████████████████████████████████▏ | 6099/21520 [5:02:30<8:27:43, 1.98s/it]
6457
+
6458
+
6459
+
6460
+
6461
+
6462
+
6463
+
6464
+
6465
+
6466
+
6467
+
6468
+
6469
+
6470
+
6471
+
6472
+
6473
+
6474
+
6475
+
6476
+
6477
+
6478
+
6479
+
6480
+
6481
+
6482
+
6483
+
6484
+
6485
+
6486
+
6487
+
6488
+
6489
+
6490
+
6491
+
6492
+
6493
+
6494
+
6495
+
6496
+
6497
+
6498
+
6499
+
6500
+
6501
+
6502
+
6503
+
6504
+
6505
+
6506
+
6507
+
6508
+
6509
+
6510
+
6511
+
6512
+
6513
+
6514
+
6515
+
6516
+
6517
+
6518
+
6519
+
6520
+
6521
+
6522
+
6523
+
6524
+
6525
+
6526
+
6527
+
6528
+
6529
+
6530
+
6531
+
6532
+
6533
+
6534
+
6535
+
6536
+
6537
+
6538
+
6539
+
6540
+
6541
+
6542
+
6543
+
6544
+
6545
+
6546
+
6547
+
6548
+
6549
+
6550
+
6551
+
6552
+
6553
+
6554
+
6555
+ 29%|████████████████████████████████████████████▉ | 6199/21520 [5:06:54<8:34:39, 2.02s/it]
6556
+
6557
+
6558
+
6559
+
6560
+
6561
+
6562
+
6563
+
6564
+
6565
+
6566
+
6567
+
6568
+
6569
+
6570
+
6571
+
6572
+
6573
+
6574
+
6575
+
6576
+
6577
+
6578
+
6579
+
6580
+
6581
+
6582
+
6583
+
6584
+
6585
+
6586
+
6587
+
6588
+
6589
+
6590
+
6591
+
6592
+
6593
+
6594
+
6595
+
6596
+
6597
+
6598
+
6599
+
6600
+
6601
+
6602
+
6603
+
6604
+
6605
+
6606
+
6607
+
6608
+
6609
+
6610
+
6611
+
6612
+
6613
+
6614
+
6615
+
6616
+
6617
+
6618
+
6619
+
6620
+
6621
+
6622
+
6623
+
6624
+
6625
+
6626
+
6627
+
6628
+
6629
+
6630
+
6631
+
6632
+
6633
+
6634
+
6635
+
6636
+
6637
+
6638
+
6639
+
6640
+
6641
+
6642
+
6643
+
6644
+
6645
+
6646
+
6647
+
6648
+
6649
+
6650
+
6651
+
6652
+
6653
+
6654
+ 29%|█████████████████████████████████████████████▋ | 6299/21520 [5:11:18<8:31:19, 2.02s/it]
6655
+
6656
+
6657
+
6658
+
6659
+
6660
+
6661
+
6662
+
6663
+
6664
+
6665
+
6666
+
6667
+
6668
+
6669
+
6670
+
6671
+
6672
+
6673
+
6674
+
6675
+
6676
+
6677
+
6678
+
6679
+
6680
+
6681
+
6682
+
6683
+
6684
+
6685
+
6686
+
6687
+
6688
+
6689
+
6690
+
6691
+
6692
+
6693
+
6694
+
6695
+
6696
+
6697
+
6698
+
6699
+
6700
+
6701
+
6702
+
6703
+
6704
+
6705
+
6706
+
6707
+
6708
+
6709
+
6710
+
6711
+
6712
+
6713
+
6714
+
6715
+
6716
+
6717
+
6718
+
6719
+
6720
+
6721
+
6722
+
6723
+
6724
+
6725
+
6726
+
6727
+
6728
+
6729
+
6730
+
6731
+
6732
+
6733
+
6734
+
6735
+
6736
+
6737
+
6738
+
6739
+
6740
+
6741
+
6742
+
6743
+
6744
+
6745
+
6746
+
6747
+
6748
+
6749
+
6750
+
6751
+
6752
+
6753
+
6754
+ 30%|██████████████████████████████████████████████▍ | 6400/21520 [5:15:44<8:25:03, 2.00s/it]
6755
+
6756
+
6757
+
6758
+
6759
+
6760
+
6761
+
6762
+
6763
+
6764
+
6765
+
6766
+
6767
+
6768
+
6769
+
6770
+
6771
+
6772
+
6773
+
6774
+
6775
+
6776
+
6777
+
6778
+
6779
+
6780
+
6781
+
6782
+
6783
+
6784
+
6785
+
6786
+
6787
+
6788
+
6789
+
6790
+
6791
+
6792
+
6793
+
6794
+
6795
+
6796
+
6797
+
6798
+
6799
+
6800
+
6801
+
6802
+
6803
+
6804
+
6805
+
6806
+
6807
+
6808
+
6809
+
6810
+
6811
+
6812
+
6813
+
6814
+
6815
+
6816
+
6817
+
6818
+
6819
+
6820
+
6821
+
6822
+
6823
+
6824
+
6825
+
6826
+
6827
+
6828
+
6829
+
6830
+
6831
+
6832
+
6833
+
6834
+
6835
+
6836
+
6837
+
6838
+
6839
+
6840
+
6841
+
6842
+
6843
+
6844
+
6845
+
6846
+
6847
+
6848
+
6849
+
6850
+
6851
+ 30%|███████████████████████████████████████████████ | 6500/21520 [5:20:08<8:19:08, 1.99s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
6852
+ ***** Running Evaluation *****
6853
+ Num examples = 1839
6854
+ Batch size = 64
6855
+ {'loss': 1.1201, 'learning_rate': 5.2548951048951044e-05, 'epoch': 1.51}
6856
+
6857
+
6858
+
6859
+
6860
+
6861
+
6862
+
6863
+
6864
+
6865
+
6866
+
6867
+
6868
+
6869
+
6870
+
6871
+
6872
+
6873
+
6874
+
6875
+
6876
+
6877
+
6878
+
6879
+
6880
+
6881
+
6882
+ 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:57<00:00, 1.83s/it]
6883
+
6884
+ Configuration saved in ./checkpoint-6500/config.json
6885
+ Model weights saved in ./checkpoint-6500/pytorch_model.bin
6886
+ Configuration saved in ./checkpoint-6500/preprocessor_config.json
6887
+ Configuration saved in ./preprocessor_config.json
6888
+ Deleting older checkpoint [checkpoint-5000] due to args.save_total_limit
6889
+
6890
+
6891
+
6892
+
6893
+
6894
+
6895
+
6896
+
6897
+
6898
+
6899
+
6900
+
6901
+
6902
+
6903
+
6904
+
6905
+
6906
+
6907
+
6908
+
6909
+
6910
+
6911
+
6912
+
6913
+
6914
+
6915
+
6916
+
6917
+
6918
+
6919
+
6920
+
6921
+
6922
+
6923
+
6924
+
6925
+
6926
+
6927
+
6928
+
6929
+
6930
+
6931
+
6932
+
6933
+
6934
+
6935
+
6936
+
6937
+
6938
+
6939
+
6940
+
6941
+
6942
+
6943
+
6944
+
6945
+
6946
+
6947
+
6948
+
6949
+
6950
+
6951
+
6952
+
6953
+
6954
+
6955
+
6956
+
6957
+
6958
+
6959
+
6960
+
6961
+
6962
+
6963
+
6964
+
6965
+
6966
+
6967
+
6968
+
6969
+
6970
+
6971
+
6972
+
6973
+
6974
+
6975
+
6976
+
6977
+
6978
+
6979
+
6980
+
6981
+
6982
+
6983
+
6984
+
6985
+ 31%|███████████████████████████████████████████████▊ | 6600/21520 [5:27:24<8:15:18, 1.99s/it]
6986
+
6987
+
6988
+
6989
+
6990
+
6991
+
6992
+
6993
+
6994
+
6995
+
6996
+
6997
+
6998
+
6999
+
7000
+
7001
+
7002
+
7003
+
7004
+
7005
+
7006
+
7007
+
7008
+
7009
+
7010
+
7011
+
7012
+
7013
+
7014
+
7015
+
7016
+
7017
+
7018
+
7019
+
7020
+
7021
+
7022
+
7023
+
7024
+
7025
+
7026
+
7027
+
7028
+
7029
+
7030
+
7031
+
7032
+
7033
+
7034
+
7035
+
7036
+
7037
+
7038
+
7039
+
7040
+
7041
+
7042
+
7043
+
7044
+
7045
+
7046
+
7047
+
7048
+
7049
+
7050
+
7051
+
7052
+
7053
+
7054
+
7055
+
7056
+
7057
+
7058
+
7059
+
7060
+
7061
+
7062
+
7063
+
7064
+
7065
+
7066
+
7067
+
7068
+
7069
+
7070
+
7071
+
7072
+
7073
+
7074
+
7075
+
7076
+
7077
+
7078
+
7079
+
7080
+
7081
+
7082
+
7083
+ 31%|████████████████████████████████████████████████▌ | 6700/21520 [5:31:47<8:03:10, 1.96s/it]
7084
+
7085
+
7086
+
7087
+
7088
+
7089
+
7090
+
7091
+
7092
+
7093
+
7094
+
7095
+
7096
+
7097
+
7098
+
7099
+
7100
+
7101
+
7102
+
7103
+
7104
+
7105
+
7106
+
7107
+
7108
+
7109
+
7110
+
7111
+
7112
+
7113
+
7114
+
7115
+
7116
+
7117
+
7118
+
7119
+
7120
+
7121
+
7122
+
7123
+
7124
+
7125
+
7126
+
7127
+
7128
+
7129
+
7130
+
7131
+
7132
+
7133
+
7134
+
7135
+
7136
+
7137
+
7138
+
7139
+
7140
+
7141
+
7142
+
7143
+
7144
+
7145
+
7146
+
7147
+
7148
+
7149
+
7150
+
7151
+
7152
+
7153
+
7154
+
7155
+
7156
+
7157
+
7158
+
7159
+
7160
+
7161
+
7162
+
7163
+
7164
+
7165
+
7166
+
7167
+
7168
+
7169
+
7170
+
7171
+
7172
+
7173
+
7174
+
7175
+
7176
+
7177
+
7178
+
7179
+
7180
+
7181
+ 32%|█████████████████████████████████████████████████▎ | 6799/21520 [5:36:08<7:56:35, 1.94s/it]
7182
+
7183
+
7184
+
7185
+
7186
+
7187
+
7188
+
7189
+
7190
+
7191
+
7192
+
7193
+
7194
+
7195
+
7196
+
7197
+
7198
+
7199
+
7200
+
7201
+
7202
+
7203
+
7204
+
7205
+
7206
+
7207
+
7208
+
7209
+
7210
+
7211
+
7212
+
7213
+
7214
+
7215
+
7216
+
7217
+
7218
+
7219
+
7220
+
7221
+
7222
+
7223
+
7224
+
7225
+
7226
+
7227
+
7228
+
7229
+
7230
+
7231
+
7232
+
7233
+
7234
+
7235
+
7236
+
7237
+
7238
+
7239
+
7240
+
7241
+
7242
+
7243
+
7244
+
7245
+
7246
+
7247
+
7248
+
7249
+
7250
+
7251
+
7252
+
7253
+
7254
+
7255
+
7256
+
7257
+
7258
+
7259
+
7260
+
7261
+
7262
+
7263
+
7264
+
7265
+
7266
+
7267
+
7268
+
7269
+
7270
+
7271
+
7272
+
7273
+
7274
+
7275
+
7276
+
7277
+
7278
+
7279
+
7280
+ 32%|██████████████████████████████████████████████████ | 6900/21520 [5:40:33<8:02:43, 1.98s/it]
7281
+
7282
+
7283
+
7284
+
7285
+
7286
+
7287
+
7288
+
7289
+
7290
+
7291
+
7292
+
7293
+
7294
+
7295
+
7296
+
7297
+
7298
+
7299
+
7300
+
7301
+
7302
+
7303
+
7304
+
7305
+
7306
+
7307
+
7308
+
7309
+
7310
+
7311
+
7312
+
7313
+
7314
+
7315
+
7316
+
7317
+
7318
+
7319
+
7320
+
7321
+
7322
+
7323
+
7324
+
7325
+
7326
+
7327
+
7328
+
7329
+
7330
+
7331
+
7332
+
7333
+
7334
+
7335
+
7336
+
7337
+
7338
+
7339
+
7340
+
7341
+
7342
+
7343
+
7344
+
7345
+
7346
+
7347
+
7348
+
7349
+
7350
+
7351
+
7352
+
7353
+
7354
+
7355
+
7356
+
7357
+
7358
+
7359
+
7360
+
7361
+
7362
+
7363
+
7364
+
7365
+
7366
+
7367
+
7368
+
7369
+
7370
+
7371
+
7372
+
7373
+
7374
+
7375
+
7376
+
7377
+
7378
+ 33%|██████████████████████████████████████████████████▋ | 6999/21520 [5:44:52<7:54:39, 1.96s/it]
7379
+ 33%|██████████████████████████████████████████████████▋ | 7000/21520 [5:44:54<7:55:25, 1.96s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
7380
+ ***** Running Evaluation *****
7381
+ Num examples = 1839
7382
+ Batch size = 64
7383
+
7384
+
7385
+
7386
+
7387
+
7388
+
7389
+
7390
+
7391
+
7392
+
7393
+
7394
+
7395
+
7396
+
7397
+
7398
+
7399
+
7400
+
7401
+
7402
+
7403
+
7404
+
7405
+
7406
+
7407
+
7408
+
7409
+
7410
+ 100%|████████████████��████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:54<00:00, 1.80s/it]
7411
+
7412
+ Configuration saved in ./checkpoint-7000/config.json
7413
+ Model weights saved in ./checkpoint-7000/pytorch_model.bin
7414
+ Configuration saved in ./checkpoint-7000/preprocessor_config.json
7415
+ Configuration saved in ./preprocessor_config.json
7416
+ Deleting older checkpoint [checkpoint-5500] due to args.save_total_limit
7417
+
7418
+
7419
+
7420
+
7421
+
7422
+
7423
+
7424
+
7425
+
7426
+
7427
+
7428
+
7429
+
7430
+
7431
+
7432
+
7433
+
7434
+
7435
+
7436
+
7437
+
7438
+
7439
+
7440
+
7441
+
7442
+
7443
+
7444
+
7445
+
7446
+
7447
+
7448
+
7449
+
7450
+
7451
+
7452
+
7453
+
7454
+
7455
+
7456
+
7457
+
7458
+
7459
+
7460
+
7461
+
7462
+
7463
+
7464
+
7465
+
7466
+
7467
+
7468
+
7469
+
7470
+
7471
+
7472
+
7473
+
7474
+
7475
+
7476
+
7477
+
7478
+
7479
+
7480
+
7481
+
7482
+
7483
+
7484
+
7485
+
7486
+
7487
+
7488
+
7489
+
7490
+
7491
+
7492
+
7493
+
7494
+
7495
+
7496
+
7497
+
7498
+
7499
+
7500
+
7501
+
7502
+
7503
+
7504
+
7505
+
7506
+
7507
+
7508
+
7509
+
7510
+
7511
+
7512
+
7513
+
7514
+ 33%|███████████████████████████████████████████████████▍ | 7100/21520 [5:52:08<8:10:16, 2.04s/it]
7515
+
7516
+
7517
+
7518
+
7519
+
7520
+
7521
+
7522
+
7523
+
7524
+
7525
+
7526
+
7527
+
7528
+
7529
+
7530
+
7531
+
7532
+
7533
+
7534
+
7535
+
7536
+
7537
+
7538
+
7539
+
7540
+
7541
+
7542
+
7543
+
7544
+
7545
+
7546
+
7547
+
7548
+
7549
+
7550
+
7551
+
7552
+
7553
+
7554
+
7555
+
7556
+
7557
+
7558
+
7559
+
7560
+
7561
+
7562
+
7563
+
7564
+
7565
+
7566
+
7567
+
7568
+
7569
+
7570
+
7571
+
7572
+
7573
+
7574
+
7575
+
7576
+
7577
+
7578
+
7579
+
7580
+
7581
+
7582
+
7583
+
7584
+
7585
+
7586
+
7587
+
7588
+
7589
+
7590
+
7591
+
7592
+
7593
+
7594
+
7595
+
7596
+
7597
+
7598
+
7599
+
7600
+
7601
+
7602
+
7603
+
7604
+
7605
+
7606
+
7607
+
7608
+
7609
+
7610
+
7611
+
7612
+ 33%|████████████████████████████████████████████████████▏ | 7199/21520 [5:56:30<8:01:29, 2.02s/it]
7613
+
7614
+
7615
+
7616
+
7617
+
7618
+
7619
+
7620
+
7621
+
7622
+
7623
+
7624
+
7625
+
7626
+
7627
+
7628
+
7629
+
7630
+
7631
+
7632
+
7633
+
7634
+
7635
+
7636
+
7637
+
7638
+
7639
+
7640
+
7641
+
7642
+
7643
+
7644
+
7645
+
7646
+
7647
+
7648
+
7649
+
7650
+
7651
+
7652
+
7653
+
7654
+
7655
+
7656
+
7657
+
7658
+
7659
+
7660
+
7661
+
7662
+
7663
+
7664
+
7665
+
7666
+
7667
+
7668
+
7669
+
7670
+
7671
+
7672
+
7673
+
7674
+
7675
+
7676
+
7677
+
7678
+
7679
+
7680
+
7681
+
7682
+
7683
+
7684
+
7685
+
7686
+
7687
+
7688
+
7689
+
7690
+
7691
+
7692
+
7693
+
7694
+
7695
+
7696
+
7697
+
7698
+
7699
+
7700
+
7701
+
7702
+
7703
+
7704
+
7705
+
7706
+
7707
+
7708
+
7709
+
7710
+
7711
+ 34%|████████████████████████████████████████████████████▉ | 7299/21520 [6:00:54<7:59:22, 2.02s/it]
7712
+
7713
+
7714
+
7715
+
7716
+
7717
+
7718
+
7719
+
7720
+
7721
+
7722
+
7723
+
7724
+
7725
+
7726
+
7727
+
7728
+
7729
+
7730
+
7731
+
7732
+
7733
+
7734
+
7735
+
7736
+
7737
+
7738
+
7739
+
7740
+
7741
+
7742
+
7743
+
7744
+
7745
+
7746
+
7747
+
7748
+
7749
+
7750
+
7751
+
7752
+
7753
+
7754
+
7755
+
7756
+
7757
+
7758
+
7759
+
7760
+
7761
+
7762
+
7763
+
7764
+
7765
+
7766
+
7767
+
7768
+
7769
+
7770
+
7771
+
7772
+
7773
+
7774
+
7775
+
7776
+
7777
+
7778
+
7779
+
7780
+
7781
+
7782
+
7783
+
7784
+
7785
+
7786
+
7787
+
7788
+
7789
+
7790
+
7791
+
7792
+
7793
+
7794
+
7795
+
7796
+
7797
+
7798
+
7799
+
7800
+
7801
+
7802
+
7803
+
7804
+
7805
+
7806
+
7807
+
7808
+
7809
+ 34%|█████████████████████████████████████████████████████▋ | 7399/21520 [6:05:20<7:52:51, 2.01s/it]
7810
+
7811
+
7812
+
7813
+
7814
+
7815
+
7816
+
7817
+
7818
+
7819
+
7820
+
7821
+
7822
+
7823
+
7824
+
7825
+
7826
+
7827
+
7828
+
7829
+
7830
+
7831
+
7832
+
7833
+
7834
+
7835
+
7836
+
7837
+
7838
+
7839
+
7840
+
7841
+
7842
+
7843
+
7844
+
7845
+
7846
+
7847
+
7848
+
7849
+
7850
+
7851
+
7852
+
7853
+
7854
+
7855
+
7856
+
7857
+
7858
+
7859
+
7860
+
7861
+
7862
+
7863
+
7864
+
7865
+
7866
+
7867
+
7868
+
7869
+
7870
+
7871
+
7872
+
7873
+
7874
+
7875
+
7876
+
7877
+
7878
+
7879
+
7880
+
7881
+
7882
+
7883
+
7884
+
7885
+
7886
+
7887
+
7888
+
7889
+
7890
+
7891
+
7892
+
7893
+
7894
+
7895
+
7896
+
7897
+
7898
+
7899
+
7900
+
7901
+
7902
+
7903
+
7904
+
7905
+
7906
+ 35%|██████████████████████████████████████████████████████▎ | 7499/21520 [6:09:43<7:42:55, 1.98s/it]
7907
+ 35%|██████████████████████████████████████████████████████▎ | 7500/21520 [6:09:45<7:45:02, 1.99s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
7908
+ ***** Running Evaluation *****
7909
+ Num examples = 1839
7910
+ Batch size = 64
7911
+
7912
+
7913
+
7914
+
7915
+
7916
+
7917
+
7918
+
7919
+
7920
+
7921
+
7922
+
7923
+
7924
+
7925
+
7926
+
7927
+
7928
+
7929
+
7930
+
7931
+
7932
+
7933
+
7934
+
7935
+
7936
+
7937
+
7938
+
7939
+
7940
+ Configuration saved in ./checkpoint-7500/config.json
7941
+ {'eval_loss': 0.3057877719402313, 'eval_wer': 0.4125112241843759, 'eval_runtime': 65.7311, 'eval_samples_per_second': 27.978, 'eval_steps_per_second': 0.441, 'epoch': 1.74}
7942
+ Model weights saved in ./checkpoint-7500/pytorch_model.bin
7943
+ Configuration saved in ./checkpoint-7500/preprocessor_config.json
7944
+ Configuration saved in ./preprocessor_config.json
7945
+ Deleting older checkpoint [checkpoint-6000] due to args.save_total_limit
7946
+
7947
+
7948
+
7949
+
7950
+
7951
+
7952
+
7953
+
7954
+
7955
+
7956
+
7957
+
7958
+
7959
+
7960
+
7961
+
7962
+
7963
+
7964
+
7965
+
7966
+
7967
+
7968
+
7969
+
7970
+
7971
+
7972
+
7973
+
7974
+
7975
+
7976
+
7977
+
7978
+
7979
+
7980
+
7981
+
7982
+
7983
+
7984
+
7985
+
7986
+
7987
+
7988
+
7989
+
7990
+
7991
+
7992
+
7993
+
7994
+
7995
+
7996
+
7997
+
7998
+
7999
+
8000
+
8001
+
8002
+
8003
+
8004
+
8005
+
8006
+
8007
+
8008
+
8009
+
8010
+
8011
+
8012
+
8013
+
8014
+
8015
+
8016
+
8017
+
8018
+
8019
+
8020
+
8021
+
8022
+
8023
+
8024
+
8025
+
8026
+
8027
+
8028
+
8029
+
8030
+
8031
+
8032
+
8033
+
8034
+
8035
+
8036
+
8037
+
8038
+
8039
+
8040
+
8041
+
8042
+
8043
+ 35%|███████████████████████████████████████████████████████ | 7600/21520 [6:16:59<7:31:32, 1.95s/it]
8044
+
8045
+
8046
+
8047
+
8048
+
8049
+
8050
+
8051
+
8052
+
8053
+
8054
+
8055
+
8056
+
8057
+
8058
+
8059
+
8060
+
8061
+
8062
+
8063
+
8064
+
8065
+
8066
+
8067
+
8068
+
8069
+
8070
+
8071
+
8072
+
8073
+
8074
+
8075
+
8076
+
8077
+
8078
+
8079
+
8080
+
8081
+
8082
+
8083
+
8084
+
8085
+
8086
+
8087
+
8088
+
8089
+
8090
+
8091
+
8092
+
8093
+
8094
+
8095
+
8096
+
8097
+
8098
+
8099
+
8100
+
8101
+
8102
+
8103
+
8104
+
8105
+
8106
+
8107
+
8108
+
8109
+
8110
+
8111
+
8112
+
8113
+
8114
+
8115
+
8116
+
8117
+
8118
+
8119
+
8120
+
8121
+
8122
+
8123
+
8124
+
8125
+
8126
+
8127
+
8128
+
8129
+
8130
+
8131
+
8132
+
8133
+
8134
+
8135
+
8136
+
8137
+
8138
+
8139
+
8140
+ 36%|███████████████████████████████████████████████████████▊ | 7699/21520 [6:21:22<7:59:09, 2.08s/it]
8141
+
8142
+
8143
+
8144
+
8145
+
8146
+
8147
+
8148
+
8149
+
8150
+
8151
+
8152
+
8153
+
8154
+
8155
+
8156
+
8157
+
8158
+
8159
+
8160
+
8161
+
8162
+
8163
+
8164
+
8165
+
8166
+
8167
+
8168
+
8169
+
8170
+
8171
+
8172
+
8173
+
8174
+
8175
+
8176
+
8177
+
8178
+
8179
+
8180
+
8181
+
8182
+
8183
+
8184
+
8185
+
8186
+
8187
+
8188
+
8189
+
8190
+
8191
+
8192
+
8193
+
8194
+
8195
+
8196
+
8197
+
8198
+
8199
+
8200
+
8201
+
8202
+
8203
+
8204
+
8205
+
8206
+
8207
+
8208
+
8209
+
8210
+
8211
+
8212
+
8213
+
8214
+
8215
+
8216
+
8217
+
8218
+
8219
+
8220
+
8221
+
8222
+
8223
+
8224
+
8225
+
8226
+
8227
+
8228
+
8229
+
8230
+
8231
+
8232
+
8233
+
8234
+
8235
+
8236
+
8237
+
8238
+
8239
+
8240
+ 36%|████████████████████████████████████████████████████████▌ | 7800/21520 [6:25:47<7:34:58, 1.99s/it]
8241
+
8242
+
8243
+
8244
+
8245
+
8246
+
8247
+
8248
+
8249
+
8250
+
8251
+
8252
+
8253
+
8254
+
8255
+
8256
+
8257
+
8258
+
8259
+
8260
+
8261
+
8262
+
8263
+
8264
+
8265
+
8266
+
8267
+
8268
+
8269
+
8270
+
8271
+
8272
+
8273
+
8274
+
8275
+
8276
+
8277
+
8278
+
8279
+
8280
+
8281
+
8282
+
8283
+
8284
+
8285
+
8286
+
8287
+
8288
+
8289
+
8290
+
8291
+
8292
+
8293
+
8294
+
8295
+
8296
+
8297
+
8298
+
8299
+
8300
+
8301
+
8302
+
8303
+
8304
+
8305
+
8306
+
8307
+
8308
+
8309
+
8310
+
8311
+
8312
+
8313
+
8314
+
8315
+
8316
+
8317
+
8318
+
8319
+
8320
+
8321
+
8322
+
8323
+
8324
+
8325
+
8326
+
8327
+
8328
+
8329
+
8330
+
8331
+
8332
+
8333
+
8334
+
8335
+
8336
+
8337
+
8338
+ 37%|█████████████████████████████████████████████████████████▎ | 7899/21520 [6:30:08<7:34:20, 2.00s/it]
8339
+
8340
+
8341
+
8342
+
8343
+
8344
+
8345
+
8346
+
8347
+
8348
+
8349
+
8350
+
8351
+
8352
+
8353
+
8354
+
8355
+
8356
+
8357
+
8358
+
8359
+
8360
+
8361
+
8362
+
8363
+
8364
+
8365
+
8366
+
8367
+
8368
+
8369
+
8370
+
8371
+
8372
+
8373
+
8374
+
8375
+
8376
+
8377
+
8378
+
8379
+
8380
+
8381
+
8382
+
8383
+
8384
+
8385
+
8386
+
8387
+
8388
+
8389
+
8390
+
8391
+
8392
+
8393
+
8394
+
8395
+
8396
+
8397
+
8398
+
8399
+
8400
+
8401
+
8402
+
8403
+
8404
+
8405
+
8406
+
8407
+
8408
+
8409
+
8410
+
8411
+
8412
+
8413
+
8414
+
8415
+
8416
+
8417
+
8418
+
8419
+
8420
+
8421
+
8422
+
8423
+
8424
+
8425
+
8426
+
8427
+
8428
+
8429
+
8430
+
8431
+
8432
+
8433
+
8434
+
8435
+
8436
+ 37%|█████████████████████████████████████████████████████████▉ | 8000/21520 [6:34:33<7:26:34, 1.98s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
8437
+ ***** Running Evaluation *****
8438
+ Num examples = 1839
8439
+ Batch size = 64
8440
+ {'loss': 1.1101, 'learning_rate': 4.7311188811188806e-05, 'epoch': 1.86}
8441
+
8442
+
8443
+
8444
+
8445
+
8446
+
8447
+
8448
+
8449
+
8450
+
8451
+
8452
+
8453
+
8454
+
8455
+
8456
+
8457
+
8458
+
8459
+
8460
+
8461
+
8462
+
8463
+
8464
+
8465
+
8466
+
8467
+
8468
+
8469
+ Configuration saved in ./checkpoint-8000/config.json
8470
+ {'eval_loss': 0.3026394248008728, 'eval_wer': 0.4099970068841664, 'eval_runtime': 64.4321, 'eval_samples_per_second': 28.542, 'eval_steps_per_second': 0.45, 'epoch': 1.86}
8471
+ Model weights saved in ./checkpoint-8000/pytorch_model.bin
8472
+ Configuration saved in ./checkpoint-8000/preprocessor_config.json
8473
+ Configuration saved in ./preprocessor_config.json
8474
+ Deleting older checkpoint [checkpoint-6500] due to args.save_total_limit
8475
+
8476
+
8477
+
8478
+
8479
+
8480
+
8481
+
8482
+
8483
+
8484
+
8485
+
8486
+
8487
+
8488
+
8489
+
8490
+
8491
+
8492
+
8493
+
8494
+
8495
+
8496
+
8497
+
8498
+
8499
+
8500
+
8501
+
8502
+
8503
+
8504
+
8505
+
8506
+
8507
+
8508
+
8509
+
8510
+
8511
+
8512
+
8513
+
8514
+
8515
+
8516
+
8517
+
8518
+
8519
+
8520
+
8521
+
8522
+
8523
+
8524
+
8525
+
8526
+
8527
+
8528
+
8529
+
8530
+
8531
+
8532
+
8533
+
8534
+
8535
+
8536
+
8537
+
8538
+
8539
+
8540
+
8541
+
8542
+
8543
+
8544
+
8545
+
8546
+
8547
+
8548
+
8549
+
8550
+
8551
+
8552
+
8553
+
8554
+
8555
+
8556
+
8557
+
8558
+
8559
+
8560
+
8561
+
8562
+
8563
+
8564
+
8565
+
8566
+
8567
+
8568
+
8569
+
8570
+
8571
+ 38%|██████████████████████████████████████████████████████████▋ | 8099/21520 [6:41:43<7:19:00, 1.96s/it]
8572
+
8573
+
8574
+
8575
+
8576
+
8577
+
8578
+
8579
+
8580
+
8581
+
8582
+
8583
+
8584
+
8585
+
8586
+
8587
+
8588
+
8589
+
8590
+
8591
+
8592
+
8593
+
8594
+
8595
+
8596
+
8597
+
8598
+
8599
+
8600
+
8601
+
8602
+
8603
+
8604
+
8605
+
8606
+
8607
+
8608
+
8609
+
8610
+
8611
+
8612
+
8613
+
8614
+
8615
+
8616
+
8617
+
8618
+
8619
+
8620
+
8621
+
8622
+
8623
+
8624
+
8625
+
8626
+
8627
+
8628
+
8629
+
8630
+
8631
+
8632
+
8633
+
8634
+
8635
+
8636
+
8637
+
8638
+
8639
+
8640
+
8641
+
8642
+
8643
+
8644
+
8645
+
8646
+
8647
+
8648
+
8649
+
8650
+
8651
+
8652
+
8653
+
8654
+
8655
+
8656
+
8657
+
8658
+
8659
+
8660
+
8661
+
8662
+
8663
+
8664
+
8665
+
8666
+
8667
+
8668
+
8669
+
8670
+ 38%|███████████████████████████████████████████████████████████▍ | 8200/21520 [6:46:08<7:12:30, 1.95s/it]
8671
+
8672
+
8673
+
8674
+
8675
+
8676
+
8677
+
8678
+
8679
+
8680
+
8681
+
8682
+
8683
+
8684
+
8685
+
8686
+
8687
+
8688
+
8689
+
8690
+
8691
+
8692
+
8693
+
8694
+
8695
+
8696
+
8697
+
8698
+
8699
+
8700
+
8701
+
8702
+
8703
+
8704
+
8705
+
8706
+
8707
+
8708
+
8709
+
8710
+
8711
+
8712
+
8713
+
8714
+
8715
+
8716
+
8717
+
8718
+
8719
+
8720
+
8721
+
8722
+
8723
+
8724
+
8725
+
8726
+
8727
+
8728
+
8729
+
8730
+
8731
+
8732
+
8733
+
8734
+
8735
+
8736
+
8737
+
8738
+
8739
+
8740
+
8741
+
8742
+
8743
+
8744
+
8745
+
8746
+
8747
+
8748
+
8749
+
8750
+
8751
+
8752
+
8753
+
8754
+
8755
+
8756
+
8757
+
8758
+
8759
+
8760
+
8761
+
8762
+
8763
+
8764
+
8765
+
8766
+
8767
+
8768
+
8769
+ 39%|████████████████████████████████████████████████████████████▏ | 8301/21520 [6:50:33<7:07:31, 1.94s/it]
8770
+
8771
+
8772
+
8773
+
8774
+
8775
+
8776
+
8777
+
8778
+
8779
+
8780
+
8781
+
8782
+
8783
+
8784
+
8785
+
8786
+
8787
+
8788
+
8789
+
8790
+
8791
+
8792
+
8793
+
8794
+
8795
+
8796
+
8797
+
8798
+
8799
+
8800
+
8801
+
8802
+
8803
+
8804
+
8805
+
8806
+
8807
+
8808
+
8809
+
8810
+
8811
+
8812
+
8813
+
8814
+
8815
+
8816
+
8817
+
8818
+
8819
+
8820
+
8821
+
8822
+
8823
+
8824
+
8825
+
8826
+
8827
+
8828
+
8829
+
8830
+
8831
+
8832
+
8833
+
8834
+
8835
+
8836
+
8837
+
8838
+
8839
+
8840
+
8841
+
8842
+
8843
+
8844
+
8845
+
8846
+
8847
+
8848
+
8849
+
8850
+
8851
+
8852
+
8853
+
8854
+
8855
+
8856
+
8857
+
8858
+
8859
+
8860
+
8861
+
8862
+
8863
+
8864
+
8865
+
8866
+
8867
+
8868
+ 39%|████████████████████████████████████████████████████████████▉ | 8400/21520 [6:54:55<7:36:42, 2.09s/it]
8869
+
8870
+
8871
+
8872
+
8873
+
8874
+
8875
+
8876
+
8877
+
8878
+
8879
+
8880
+
8881
+
8882
+
8883
+
8884
+
8885
+
8886
+
8887
+
8888
+
8889
+
8890
+
8891
+
8892
+
8893
+
8894
+
8895
+
8896
+
8897
+
8898
+
8899
+
8900
+
8901
+
8902
+
8903
+
8904
+
8905
+
8906
+
8907
+
8908
+
8909
+
8910
+
8911
+
8912
+
8913
+
8914
+
8915
+
8916
+
8917
+
8918
+
8919
+
8920
+
8921
+
8922
+
8923
+
8924
+
8925
+
8926
+
8927
+
8928
+
8929
+
8930
+
8931
+
8932
+
8933
+
8934
+
8935
+
8936
+
8937
+
8938
+
8939
+
8940
+
8941
+
8942
+
8943
+
8944
+
8945
+
8946
+
8947
+
8948
+
8949
+
8950
+
8951
+
8952
+
8953
+
8954
+
8955
+
8956
+
8957
+
8958
+
8959
+
8960
+
8961
+
8962
+
8963
+
8964
+
8965
+
8966
+ 39%|█████████████████████████████████████████████████████████████▌ | 8499/21520 [6:59:15<7:12:41, 1.99s/it]
8967
+ 39%|█████████████████████████████████████████████████████████████▌ | 8500/21520 [6:59:17<7:12:02, 1.99s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
8968
+ ***** Running Evaluation *****
8969
+ Num examples = 1839
8970
+ Batch size = 64
8971
+
8972
+
8973
+
8974
+
8975
+
8976
+
8977
+
8978
+
8979
+
8980
+
8981
+
8982
+
8983
+
8984
+
8985
+
8986
+
8987
+
8988
+
8989
+
8990
+
8991
+
8992
+
8993
+
8994
+
8995
+
8996
+
8997
+
8998
+
8999
+ 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:56<00:00, 1.81s/it]
9000
+
9001
+ Configuration saved in ./checkpoint-8500/config.json
9002
+ Model weights saved in ./checkpoint-8500/pytorch_model.bin
9003
+ Configuration saved in ./checkpoint-8500/preprocessor_config.json
wandb/run-20220129_131141-h6nhqm30/files/requirements.txt ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiohttp==3.8.1
2
+ aiosignal==1.2.0
3
+ analytics-python==1.4.0
4
+ anyio==3.5.0
5
+ appdirs==1.4.4
6
+ argon2-cffi-bindings==21.2.0
7
+ argon2-cffi==21.3.0
8
+ asgiref==3.5.0
9
+ asttokens==2.0.5
10
+ async-timeout==4.0.2
11
+ attrs==21.4.0
12
+ audioread==2.1.9
13
+ backcall==0.2.0
14
+ backoff==1.10.0
15
+ bcrypt==3.2.0
16
+ beautifulsoup4==4.9.3
17
+ black==21.12b0
18
+ bleach==4.1.0
19
+ brotlipy==0.7.0
20
+ certifi==2020.12.5
21
+ cffi==1.14.3
22
+ chardet==3.0.4
23
+ charset-normalizer==2.0.10
24
+ click==8.0.3
25
+ conda-build==3.21.4
26
+ conda-package-handling==1.7.2
27
+ conda==4.9.2
28
+ configparser==5.2.0
29
+ cryptography==3.2.1
30
+ cycler==0.11.0
31
+ datasets==1.18.2.dev0
32
+ debugpy==1.5.1
33
+ decorator==4.4.2
34
+ defusedxml==0.7.1
35
+ dill==0.3.4
36
+ dnspython==2.1.0
37
+ docker-pycreds==0.4.0
38
+ entrypoints==0.3
39
+ executing==0.8.2
40
+ fastapi==0.73.0
41
+ ffmpy==0.3.0
42
+ filelock==3.0.12
43
+ fonttools==4.29.0
44
+ frozenlist==1.3.0
45
+ fsspec==2022.1.0
46
+ gitdb==4.0.9
47
+ gitpython==3.1.26
48
+ glob2==0.7
49
+ gradio==2.7.5.2
50
+ h11==0.13.0
51
+ huggingface-hub==0.4.0
52
+ idna==2.10
53
+ importlib-resources==5.4.0
54
+ ipykernel==6.7.0
55
+ ipython-genutils==0.2.0
56
+ ipython==8.0.1
57
+ ipywidgets==7.6.3
58
+ jedi==0.17.0
59
+ jinja2==2.11.3
60
+ jiwer==2.3.0
61
+ joblib==1.1.0
62
+ json5==0.9.6
63
+ jsonschema==4.4.0
64
+ jupyter-client==7.1.2
65
+ jupyter-core==4.9.1
66
+ jupyterlab-pygments==0.1.2
67
+ jupyterlab-server==1.2.0
68
+ jupyterlab-widgets==1.0.2
69
+ jupyterlab==2.2.9
70
+ kiwisolver==1.3.2
71
+ libarchive-c==2.9
72
+ librosa==0.8.1
73
+ llvmlite==0.38.0
74
+ markdown2==2.4.2
75
+ markupsafe==1.1.1
76
+ matplotlib-inline==0.1.3
77
+ matplotlib==3.5.1
78
+ mistune==0.8.4
79
+ mkl-fft==1.3.0
80
+ mkl-random==1.1.1
81
+ mkl-service==2.3.0
82
+ monotonic==1.6
83
+ multidict==6.0.2
84
+ multiprocess==0.70.12.2
85
+ mypy-extensions==0.4.3
86
+ nano==0.10.0
87
+ nbclient==0.5.10
88
+ nbconvert==6.4.1
89
+ nbformat==5.1.3
90
+ nest-asyncio==1.5.4
91
+ notebook==6.4.8
92
+ numba==0.55.1
93
+ numpy==1.19.2
94
+ olefile==0.46
95
+ packaging==21.3
96
+ pandas==1.4.0
97
+ pandocfilters==1.5.0
98
+ paramiko==2.9.2
99
+ parso==0.8.1
100
+ pathspec==0.9.0
101
+ pathtools==0.1.2
102
+ pexpect==4.8.0
103
+ pickleshare==0.7.5
104
+ pillow==8.1.2
105
+ pip==21.3.1
106
+ pkginfo==1.7.0
107
+ platformdirs==2.4.1
108
+ pooch==1.6.0
109
+ prometheus-client==0.13.0
110
+ promise==2.3
111
+ prompt-toolkit==3.0.8
112
+ protobuf==3.19.4
113
+ psutil==5.8.0
114
+ ptyprocess==0.7.0
115
+ pure-eval==0.2.2
116
+ pyarrow==6.0.1
117
+ pycosat==0.6.3
118
+ pycparser==2.20
119
+ pycryptodome==3.13.0
120
+ pydantic==1.9.0
121
+ pydub==0.25.1
122
+ pygments==2.8.0
123
+ pynacl==1.5.0
124
+ pyopenssl==19.1.0
125
+ pyparsing==3.0.7
126
+ pyrsistent==0.18.1
127
+ pysocks==1.7.1
128
+ python-dateutil==2.8.2
129
+ python-etcd==0.4.5
130
+ python-levenshtein==0.12.2
131
+ python-multipart==0.0.5
132
+ pytz==2021.1
133
+ pyyaml==5.4.1
134
+ pyzmq==22.3.0
135
+ regex==2022.1.18
136
+ requests==2.24.0
137
+ resampy==0.2.2
138
+ ruamel-yaml==0.15.87
139
+ sacremoses==0.0.47
140
+ scikit-learn==1.0.2
141
+ scipy==1.7.3
142
+ send2trash==1.8.0
143
+ sentry-sdk==1.5.4
144
+ setuptools==50.3.1.post20201107
145
+ shortuuid==1.0.8
146
+ six==1.15.0
147
+ smmap==5.0.0
148
+ sniffio==1.2.0
149
+ soundfile==0.10.3.post1
150
+ soupsieve==2.2
151
+ stack-data==0.1.4
152
+ starlette==0.17.1
153
+ subprocess32==3.5.4
154
+ termcolor==1.1.0
155
+ terminado==0.13.1
156
+ testpath==0.5.0
157
+ threadpoolctl==3.0.0
158
+ tokenizers==0.11.4
159
+ tomli==1.2.3
160
+ torch==1.10.2
161
+ torchaudio==0.10.2
162
+ torchelastic==0.2.2
163
+ torchtext==0.9.1
164
+ torchvision==0.9.1
165
+ tornado==6.1
166
+ tqdm==4.62.3
167
+ traitlets==5.1.1
168
+ transformers==4.17.0.dev0
169
+ typing-extensions==4.0.1
170
+ urllib3==1.25.11
171
+ uvicorn==0.17.1
172
+ wandb==0.12.9
173
+ wcwidth==0.2.5
174
+ webencodings==0.5.1
175
+ wheel==0.35.1
176
+ widgetsnbextension==3.5.2
177
+ xxhash==2.0.2
178
+ yarl==1.7.2
179
+ yaspin==2.1.0
180
+ zipp==3.7.0
wandb/run-20220129_131141-h6nhqm30/files/wandb-metadata.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-4.15.0-151-generic-x86_64-with-glibc2.10",
3
+ "python": "3.8.8",
4
+ "heartbeatAt": "2022-01-29T13:11:43.886807",
5
+ "startedAt": "2022-01-29T13:11:41.626227",
6
+ "docker": null,
7
+ "gpu": "Tesla V100S-PCIE-32GB",
8
+ "gpu_count": 1,
9
+ "cpu_count": 60,
10
+ "cuda": null,
11
+ "args": [
12
+ "--dataset_name=mozilla-foundation/common_voice_8_0",
13
+ "--model_name_or_path=facebook/wav2vec2-xls-r-300m",
14
+ "--dataset_config_name=fr",
15
+ "--output_dir=./",
16
+ "--overwrite_output_dir",
17
+ "--num_train_epochs=5",
18
+ "--per_device_train_batch_size=64",
19
+ "--per_device_eval_batch_size=64",
20
+ "--gradient_accumulation_steps=1",
21
+ "--learning_rate=7e-5",
22
+ "--warmup_steps=1500",
23
+ "--length_column_name=input_length",
24
+ "--evaluation_strategy=steps",
25
+ "--text_column_name=sentence",
26
+ "--save_steps=500",
27
+ "--eval_steps=500",
28
+ "--logging_steps=100",
29
+ "--layerdrop=0.0",
30
+ "--activation_dropout=0.1",
31
+ "--save_total_limit=3",
32
+ "--freeze_feature_encoder",
33
+ "--feat_proj_dropout=0.0",
34
+ "--mask_time_prob=0.75",
35
+ "--mask_time_length=10",
36
+ "--mask_feature_prob=0.33",
37
+ "--mask_feature_length=10",
38
+ "--gradient_checkpointing",
39
+ "--report_to=wandb",
40
+ "--run_name=xls-r-300m-fr",
41
+ "--max_eval_samples=4000",
42
+ "--max_duration_in_seconds=5",
43
+ "--use_auth_token",
44
+ "--fp16",
45
+ "--group_by_length",
46
+ "--preprocessing_num_workers=64",
47
+ "--do_train",
48
+ "--do_eval",
49
+ "--load_best_model_at_end",
50
+ "--push_to_hub"
51
+ ],
52
+ "state": "running",
53
+ "program": "run_speech_recognition_ctc.py",
54
+ "codePath": "run_speech_recognition_ctc.py",
55
+ "git": {
56
+ "remote": "https://huggingface.co/AlexN/xls-r-300m-fr",
57
+ "commit": "44c47390840b2e07543aa79514aa51086a0ff3cf"
58
+ },
59
+ "email": "alexandrenap@hotmail.fr",
60
+ "root": "/workspace/xls-r-300m-fr",
61
+ "host": "job-1abccd0a-3293-4ffe-8274-9e8f841f653f",
62
+ "username": "ovh",
63
+ "executable": "/opt/conda/bin/python"
64
+ }
wandb/run-20220129_131141-h6nhqm30/files/wandb-summary.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220129_131141-h6nhqm30/logs/debug-internal.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220129_131141-h6nhqm30/logs/debug.log ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-01-29 13:11:41,630 INFO MainThread:44227 [wandb_setup.py:_flush():71] setting env: {}
2
+ 2022-01-29 13:11:41,630 INFO MainThread:44227 [wandb_setup.py:_flush():71] setting login settings: {}
3
+ 2022-01-29 13:11:41,631 INFO MainThread:44227 [wandb_init.py:_log_setup():371] Logging user logs to /workspace/xls-r-300m-fr/wandb/run-20220129_131141-h6nhqm30/logs/debug.log
4
+ 2022-01-29 13:11:41,631 INFO MainThread:44227 [wandb_init.py:_log_setup():372] Logging internal logs to /workspace/xls-r-300m-fr/wandb/run-20220129_131141-h6nhqm30/logs/debug-internal.log
5
+ 2022-01-29 13:11:41,631 INFO MainThread:44227 [wandb_init.py:init():404] calling init triggers
6
+ 2022-01-29 13:11:41,631 INFO MainThread:44227 [wandb_init.py:init():409] wandb.init called with sweep_config: {}
7
+ config: {}
8
+ 2022-01-29 13:11:41,631 INFO MainThread:44227 [wandb_init.py:init():460] starting backend
9
+ 2022-01-29 13:11:41,631 INFO MainThread:44227 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
10
+ 2022-01-29 13:11:42,043 INFO MainThread:44227 [backend.py:ensure_launched():216] starting backend process...
11
+ 2022-01-29 13:11:42,437 INFO MainThread:44227 [backend.py:ensure_launched():221] started backend process with pid: 13445
12
+ 2022-01-29 13:11:42,439 INFO MainThread:44227 [wandb_init.py:init():469] backend started and connected
13
+ 2022-01-29 13:11:42,449 INFO MainThread:44227 [wandb_init.py:init():533] updated telemetry
14
+ 2022-01-29 13:11:43,278 INFO MainThread:44227 [wandb_init.py:init():563] communicating current version
15
+ 2022-01-29 13:11:43,680 INFO MainThread:44227 [wandb_init.py:init():568] got version response
16
+ 2022-01-29 13:11:43,681 INFO MainThread:44227 [wandb_init.py:init():578] communicating run to backend with 30 second timeout
17
+ 2022-01-29 13:11:43,876 INFO MainThread:44227 [wandb_init.py:init():606] starting run threads in backend
18
+ 2022-01-29 13:11:44,463 INFO MainThread:44227 [wandb_run.py:_console_start():1810] atexit reg
19
+ 2022-01-29 13:11:44,464 INFO MainThread:44227 [wandb_run.py:_redirect():1684] redirect: SettingsConsole.REDIRECT
20
+ 2022-01-29 13:11:44,464 INFO MainThread:44227 [wandb_run.py:_redirect():1689] Redirecting console.
21
+ 2022-01-29 13:11:44,471 INFO MainThread:44227 [wandb_run.py:_redirect():1745] Redirects installed.
22
+ 2022-01-29 13:11:44,471 INFO MainThread:44227 [wandb_init.py:init():633] run started, returning control to user process
23
+ 2022-01-29 13:11:44,474 INFO MainThread:44227 [wandb_run.py:_config_callback():956] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 216, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-xls-r-300m', 'transformers_version': '4.17.0.dev0', 'feat_extract_dropout': 0.0, 'model_type': 'wav2vec2', 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.0, 'attention_dropout': 0.0, 'activation_dropout': 0.1, 'feat_proj_dropout': 0.0, 'final_dropout': 0.0, 'layerdrop': 0.0, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 218, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.75, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.33, 'mask_feature_length': 10, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'mean', 'ctc_zero_infinity': False, 'add_adapter': False, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'output_dir': './', 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'evaluation_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 64, 'per_device_eval_batch_size': 64, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'gradient_accumulation_steps': 1, 'eval_accumulation_steps': 'None', 'learning_rate': 7e-05, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 5.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 1500, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/Jan29_11-53-08_job-1abccd0a-3293-4ffe-8274-9e8f841f653f', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 100, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 500, 'save_total_limit': 3, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'eval_steps': 500, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': 'xls-r-300m-fr', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': True, 'metric_for_best_model': 'loss', 'greater_is_better': False, 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'input_length', 'report_to': "['wandb']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'None', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'gradient_checkpointing': True, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'train_batch_size': 64, 'eval_batch_size': 64}
24
+ 2022-01-29 13:11:44,479 INFO MainThread:44227 [wandb_watch.py:watch():43] Watching
wandb/run-20220129_131141-h6nhqm30/run-h6nhqm30.wandb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:624404f6778fa63cf42e5d65fc81506fe3d0200ae05be92d55229cbe4a878ab4
3
+ size 62254538
wandb/run-20220129_215451-1vipdbow/files/conda-environment.yaml ADDED
File without changes
wandb/run-20220129_215451-1vipdbow/files/config.yaml ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220129_215451-1vipdbow/files/output.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220129_215451-1vipdbow/files/requirements.txt ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiohttp==3.8.1
2
+ aiosignal==1.2.0
3
+ analytics-python==1.4.0
4
+ anyio==3.5.0
5
+ appdirs==1.4.4
6
+ argon2-cffi-bindings==21.2.0
7
+ argon2-cffi==21.3.0
8
+ asgiref==3.5.0
9
+ asttokens==2.0.5
10
+ async-timeout==4.0.2
11
+ attrs==21.4.0
12
+ audioread==2.1.9
13
+ backcall==0.2.0
14
+ backoff==1.10.0
15
+ bcrypt==3.2.0
16
+ beautifulsoup4==4.9.3
17
+ black==21.12b0
18
+ bleach==4.1.0
19
+ brotlipy==0.7.0
20
+ certifi==2020.12.5
21
+ cffi==1.14.3
22
+ chardet==3.0.4
23
+ charset-normalizer==2.0.10
24
+ click==8.0.3
25
+ conda-build==3.21.4
26
+ conda-package-handling==1.7.2
27
+ conda==4.9.2
28
+ configparser==5.2.0
29
+ cryptography==3.2.1
30
+ cycler==0.11.0
31
+ datasets==1.18.2.dev0
32
+ debugpy==1.5.1
33
+ decorator==4.4.2
34
+ defusedxml==0.7.1
35
+ dill==0.3.4
36
+ dnspython==2.1.0
37
+ docker-pycreds==0.4.0
38
+ entrypoints==0.3
39
+ executing==0.8.2
40
+ fastapi==0.73.0
41
+ ffmpy==0.3.0
42
+ filelock==3.0.12
43
+ fonttools==4.29.0
44
+ frozenlist==1.3.0
45
+ fsspec==2022.1.0
46
+ gitdb==4.0.9
47
+ gitpython==3.1.26
48
+ glob2==0.7
49
+ gradio==2.7.5.2
50
+ h11==0.13.0
51
+ huggingface-hub==0.4.0
52
+ idna==2.10
53
+ importlib-resources==5.4.0
54
+ ipykernel==6.7.0
55
+ ipython-genutils==0.2.0
56
+ ipython==8.0.1
57
+ ipywidgets==7.6.3
58
+ jedi==0.17.0
59
+ jinja2==2.11.3
60
+ jiwer==2.3.0
61
+ joblib==1.1.0
62
+ json5==0.9.6
63
+ jsonschema==4.4.0
64
+ jupyter-client==7.1.2
65
+ jupyter-core==4.9.1
66
+ jupyterlab-pygments==0.1.2
67
+ jupyterlab-server==1.2.0
68
+ jupyterlab-widgets==1.0.2
69
+ jupyterlab==2.2.9
70
+ kiwisolver==1.3.2
71
+ libarchive-c==2.9
72
+ librosa==0.8.1
73
+ llvmlite==0.38.0
74
+ markdown2==2.4.2
75
+ markupsafe==1.1.1
76
+ matplotlib-inline==0.1.3
77
+ matplotlib==3.5.1
78
+ mistune==0.8.4
79
+ mkl-fft==1.3.0
80
+ mkl-random==1.1.1
81
+ mkl-service==2.3.0
82
+ monotonic==1.6
83
+ multidict==6.0.2
84
+ multiprocess==0.70.12.2
85
+ mypy-extensions==0.4.3
86
+ nano==0.10.0
87
+ nbclient==0.5.10
88
+ nbconvert==6.4.1
89
+ nbformat==5.1.3
90
+ nest-asyncio==1.5.4
91
+ notebook==6.4.8
92
+ numba==0.55.1
93
+ numpy==1.19.2
94
+ olefile==0.46
95
+ packaging==21.3
96
+ pandas==1.4.0
97
+ pandocfilters==1.5.0
98
+ paramiko==2.9.2
99
+ parso==0.8.1
100
+ pathspec==0.9.0
101
+ pathtools==0.1.2
102
+ pexpect==4.8.0
103
+ pickleshare==0.7.5
104
+ pillow==8.1.2
105
+ pip==21.3.1
106
+ pkginfo==1.7.0
107
+ platformdirs==2.4.1
108
+ pooch==1.6.0
109
+ prometheus-client==0.13.0
110
+ promise==2.3
111
+ prompt-toolkit==3.0.8
112
+ protobuf==3.19.4
113
+ psutil==5.8.0
114
+ ptyprocess==0.7.0
115
+ pure-eval==0.2.2
116
+ pyarrow==6.0.1
117
+ pycosat==0.6.3
118
+ pycparser==2.20
119
+ pycryptodome==3.13.0
120
+ pydantic==1.9.0
121
+ pydub==0.25.1
122
+ pygments==2.8.0
123
+ pynacl==1.5.0
124
+ pyopenssl==19.1.0
125
+ pyparsing==3.0.7
126
+ pyrsistent==0.18.1
127
+ pysocks==1.7.1
128
+ python-dateutil==2.8.2
129
+ python-etcd==0.4.5
130
+ python-levenshtein==0.12.2
131
+ python-multipart==0.0.5
132
+ pytz==2021.1
133
+ pyyaml==5.4.1
134
+ pyzmq==22.3.0
135
+ regex==2022.1.18
136
+ requests==2.24.0
137
+ resampy==0.2.2
138
+ ruamel-yaml==0.15.87
139
+ sacremoses==0.0.47
140
+ scikit-learn==1.0.2
141
+ scipy==1.7.3
142
+ send2trash==1.8.0
143
+ sentry-sdk==1.5.4
144
+ setuptools==50.3.1.post20201107
145
+ shortuuid==1.0.8
146
+ six==1.15.0
147
+ smmap==5.0.0
148
+ sniffio==1.2.0
149
+ soundfile==0.10.3.post1
150
+ soupsieve==2.2
151
+ stack-data==0.1.4
152
+ starlette==0.17.1
153
+ subprocess32==3.5.4
154
+ termcolor==1.1.0
155
+ terminado==0.13.1
156
+ testpath==0.5.0
157
+ threadpoolctl==3.0.0
158
+ tokenizers==0.11.4
159
+ tomli==1.2.3
160
+ torch==1.10.2
161
+ torchaudio==0.10.2
162
+ torchelastic==0.2.2
163
+ torchtext==0.9.1
164
+ torchvision==0.9.1
165
+ tornado==6.1
166
+ tqdm==4.62.3
167
+ traitlets==5.1.1
168
+ transformers==4.17.0.dev0
169
+ typing-extensions==4.0.1
170
+ urllib3==1.25.11
171
+ uvicorn==0.17.1
172
+ wandb==0.12.9
173
+ wcwidth==0.2.5
174
+ webencodings==0.5.1
175
+ wheel==0.35.1
176
+ widgetsnbextension==3.5.2
177
+ xxhash==2.0.2
178
+ yarl==1.7.2
179
+ yaspin==2.1.0
180
+ zipp==3.7.0
wandb/run-20220129_215451-1vipdbow/files/wandb-metadata.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-4.15.0-151-generic-x86_64-with-glibc2.10",
3
+ "python": "3.8.8",
4
+ "heartbeatAt": "2022-01-29T21:54:53.025463",
5
+ "startedAt": "2022-01-29T21:54:51.704109",
6
+ "docker": null,
7
+ "gpu": "Tesla V100S-PCIE-32GB",
8
+ "gpu_count": 1,
9
+ "cpu_count": 60,
10
+ "cuda": null,
11
+ "args": [
12
+ "--dataset_name=mozilla-foundation/common_voice_8_0",
13
+ "--model_name_or_path=facebook/wav2vec2-xls-r-300m",
14
+ "--dataset_config_name=fr",
15
+ "--tokenizer_name_or_path=./",
16
+ "--output_dir=./",
17
+ "--overwrite_output_dir",
18
+ "--num_train_epochs=2",
19
+ "--per_device_train_batch_size=64",
20
+ "--per_device_eval_batch_size=64",
21
+ "--gradient_accumulation_steps=1",
22
+ "--learning_rate=1e-4",
23
+ "--warmup_steps=1500",
24
+ "--length_column_name=input_length",
25
+ "--evaluation_strategy=steps",
26
+ "--text_column_name=sentence",
27
+ "--save_steps=500",
28
+ "--eval_steps=500",
29
+ "--logging_steps=100",
30
+ "--layerdrop=0.0",
31
+ "--activation_dropout=0.05",
32
+ "--save_total_limit=2",
33
+ "--freeze_feature_encoder",
34
+ "--feat_proj_dropout=0.0",
35
+ "--mask_time_prob=0.75",
36
+ "--mask_time_length=10",
37
+ "--mask_feature_prob=0.4",
38
+ "--mask_feature_length=10",
39
+ "--gradient_checkpointing",
40
+ "--report_to=wandb",
41
+ "--run_name=xls-r-300m-fr",
42
+ "--max_eval_samples=6000",
43
+ "--max_duration_in_seconds=9",
44
+ "--use_auth_token",
45
+ "--fp16",
46
+ "--group_by_length",
47
+ "--preprocessing_num_workers=64",
48
+ "--do_train",
49
+ "--do_eval",
50
+ "--load_best_model_at_end",
51
+ "--push_to_hub"
52
+ ],
53
+ "state": "running",
54
+ "program": "run_speech_recognition_ctc.py",
55
+ "codePath": "run_speech_recognition_ctc.py",
56
+ "git": {
57
+ "remote": "https://huggingface.co/AlexN/xls-r-300m-fr",
58
+ "commit": "c58dbaf4476093ff9758e2d11bbf63f828a0ecc3"
59
+ },
60
+ "email": "alexandrenap@hotmail.fr",
61
+ "root": "/workspace/xls-r-300m-fr",
62
+ "host": "job-1abccd0a-3293-4ffe-8274-9e8f841f653f",
63
+ "username": "ovh",
64
+ "executable": "/opt/conda/bin/python"
65
+ }
wandb/run-20220129_215451-1vipdbow/files/wandb-summary.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220129_215451-1vipdbow/logs/debug-internal.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220129_215451-1vipdbow/logs/debug.log ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-01-29 21:54:51,708 INFO MainThread:7453 [wandb_setup.py:_flush():71] setting env: {}
2
+ 2022-01-29 21:54:51,708 INFO MainThread:7453 [wandb_setup.py:_flush():71] setting login settings: {}
3
+ 2022-01-29 21:54:51,708 INFO MainThread:7453 [wandb_init.py:_log_setup():371] Logging user logs to /workspace/xls-r-300m-fr/wandb/run-20220129_215451-1vipdbow/logs/debug.log
4
+ 2022-01-29 21:54:51,709 INFO MainThread:7453 [wandb_init.py:_log_setup():372] Logging internal logs to /workspace/xls-r-300m-fr/wandb/run-20220129_215451-1vipdbow/logs/debug-internal.log
5
+ 2022-01-29 21:54:51,709 INFO MainThread:7453 [wandb_init.py:init():404] calling init triggers
6
+ 2022-01-29 21:54:51,709 INFO MainThread:7453 [wandb_init.py:init():409] wandb.init called with sweep_config: {}
7
+ config: {}
8
+ 2022-01-29 21:54:51,709 INFO MainThread:7453 [wandb_init.py:init():460] starting backend
9
+ 2022-01-29 21:54:51,709 INFO MainThread:7453 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
10
+ 2022-01-29 21:54:51,806 INFO MainThread:7453 [backend.py:ensure_launched():216] starting backend process...
11
+ 2022-01-29 21:54:51,893 INFO MainThread:7453 [backend.py:ensure_launched():221] started backend process with pid: 37713
12
+ 2022-01-29 21:54:51,897 INFO MainThread:7453 [wandb_init.py:init():469] backend started and connected
13
+ 2022-01-29 21:54:51,906 INFO MainThread:7453 [wandb_init.py:init():533] updated telemetry
14
+ 2022-01-29 21:54:52,074 INFO MainThread:7453 [wandb_init.py:init():563] communicating current version
15
+ 2022-01-29 21:54:52,818 INFO MainThread:7453 [wandb_init.py:init():568] got version response
16
+ 2022-01-29 21:54:52,818 INFO MainThread:7453 [wandb_init.py:init():578] communicating run to backend with 30 second timeout
17
+ 2022-01-29 21:54:53,017 INFO MainThread:7453 [wandb_init.py:init():606] starting run threads in backend
18
+ 2022-01-29 21:54:53,621 INFO MainThread:7453 [wandb_run.py:_console_start():1810] atexit reg
19
+ 2022-01-29 21:54:53,622 INFO MainThread:7453 [wandb_run.py:_redirect():1684] redirect: SettingsConsole.REDIRECT
20
+ 2022-01-29 21:54:53,623 INFO MainThread:7453 [wandb_run.py:_redirect():1689] Redirecting console.
21
+ 2022-01-29 21:54:53,628 INFO MainThread:7453 [wandb_run.py:_redirect():1745] Redirects installed.
22
+ 2022-01-29 21:54:53,628 INFO MainThread:7453 [wandb_init.py:init():633] run started, returning control to user process
23
+ 2022-01-29 21:54:53,630 INFO MainThread:7453 [wandb_run.py:_config_callback():956] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 216, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-xls-r-300m', 'transformers_version': '4.17.0.dev0', 'feat_extract_dropout': 0.0, 'model_type': 'wav2vec2', 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.0, 'attention_dropout': 0.0, 'activation_dropout': 0.05, 'feat_proj_dropout': 0.0, 'final_dropout': 0.0, 'layerdrop': 0.0, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 218, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.75, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.4, 'mask_feature_length': 10, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'mean', 'ctc_zero_infinity': False, 'add_adapter': False, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'output_dir': './', 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'evaluation_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 64, 'per_device_eval_batch_size': 64, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'gradient_accumulation_steps': 1, 'eval_accumulation_steps': 'None', 'learning_rate': 0.0001, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 2.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 1500, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/Jan29_20-37-14_job-1abccd0a-3293-4ffe-8274-9e8f841f653f', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 100, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 500, 'save_total_limit': 2, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'eval_steps': 500, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': 'xls-r-300m-fr', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': True, 'metric_for_best_model': 'loss', 'greater_is_better': False, 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'input_length', 'report_to': "['wandb']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'None', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'gradient_checkpointing': True, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'train_batch_size': 64, 'eval_batch_size': 64}
24
+ 2022-01-29 21:54:53,634 INFO MainThread:7453 [wandb_watch.py:watch():43] Watching
wandb/run-20220129_215451-1vipdbow/run-1vipdbow.wandb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51e1b275cfd48d2b806baadf5c43eb7f3d8efffce1a2b58da8b720f5bf6e721d
3
+ size 104538108