# Detectron2 + DocLayNet Model made for document layout analysis ## Load the model First install the required dependencies: ```bash pip install -r requirements.txt ``` In a `.py` or `.ipynb` file: ```python import cv2 import json import matplotlib.pyplot as plt from detectron2.utils.visualizer import Visualizer from detectron2.data import Metadata from detectron2.config import get_cfg from detectron2.engine import DefaultPredictor cfg = get_cfg() cfg.merge_from_file("config.yml") cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set the testing threshold for this model with open("metadata.json", "r") as f: metadata_dict = json.load(f) predictor = DefaultPredictor(cfg) metadata = Metadata() metadata.set(thing_classes=metadata_dict["thing_classes"]) im = cv2.imread("image.jpg") output = predictor(im) v = Visualizer(im[:, :, ::-1], metadata=metadata, scale=0.8) v = v.draw_instance_predictions(output["instances"].to("cpu")) plt.figure(figsize=(14,10)) plt.imshow(cv2.cvtColor(v.get_image()[:, :, ::-1], cv2.COLOR_BGR2RGB)) plt.show() ```