File size: 2,203 Bytes
32f110d
 
 
 
 
 
 
9eed218
 
 
 
04e1087
9eed218
 
 
 
a145b8c
2df55e4
32f110d
 
 
 
 
a145b8c
32f110d
a145b8c
2df55e4
a145b8c
32f110d
 
 
 
 
 
 
a145b8c
32f110d
 
 
 
 
 
 
 
 
 
 
 
009d193
32f110d
 
 
 
 
009d193
 
32f110d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
032b10a
32f110d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
datasets:
- IlyaGusev/habr
- Den4ikAI/russian_instructions
- wiki_qa
inference:
  parameters:
    min_length: 20
    max_new_tokens: 250
    top_k: 50
    top_p: 0.9 
    early_stopping: True
    no_repeat_ngram_size: 2
    use_cache: True
    repetition_penalty: 1.5 
    length_penalty: 0.8
    num_beams: 20
        
license: apache-2.0
language:
- ru
pipeline_tag: text-generation
widget:
- text: "Почему трава зеленая?"
  example_title: Question Answering
- text: "Как зарабатывать много денег обучая модели?"
  example_title: Open domain Knoweledge
- text: "Напиши код который выведет Привет Мир"
  example_title: Scientific knowledge
library_name: transformers
tags:
- finance
- code
---

<h1 style="font-size: 42px">Instructions ruGPT Medium v0.11a<h1/>



# Model Summary

> Я дообучил small rugpt на датасете инструкций, хабра, QA и кода


# Quick Start

```python
from transformers import pipeline
pipe = pipeline(model='AlexWortega/instruct_rugptMedium')
pipe('''Как собрать питон код?''')
```
or
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("AlexWortega/instruct_rugptMedium")
model = AutoModelForCausalLM.from_pretrained("AlexWortega/instruct_rugptMedium")
```

# License

The weights of Instructions ruGPT Small v0.1a are licensed under version 2.0 of the Apache License.



## Hyperparameters

I used Novograd with a learning rate of 2e-5 and global batch size of 6 (3 for each data parallel worker).
I use both data parallelism and pipeline parallelism to conduct training.
During training, we truncate the input sequence to 1024 tokens, and for input sequence that contains less than 1024 tokens, we concatenate multiple sequences into one long sequence to improve the data efficiency.



# References

#Metrics

SOON

## BibTeX entry and citation info

```bibtex
@article{
  title={GPT2xl is underrated task solver},
  author={Nickolich Aleksandr, 5Q, datascience, Ilya Gusev, Alex Kukushkin, Karina Romanova, Arseniy Shahmatov, Maksim Gersimenko},
  year={2023}
}
```