File size: 3,446 Bytes
32f110d 9eed218 04e1087 9eed218 5ce2a2e 2df55e4 32f110d 68462ce 32f110d a145b8c 2df55e4 a145b8c 32f110d 8f9fe9b 32f110d adec067 32f110d adec067 009d193 32f110d adec067 32f110d 338af45 32f110d 032b10a 32f110d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
datasets:
- IlyaGusev/habr
- Den4ikAI/russian_instructions
- wiki_qa
inference:
parameters:
min_length: 20
max_new_tokens: 250
top_k: 50
top_p: 0.9
early_stopping: True
no_repeat_ngram_size: 2
use_cache: True
repetition_penalty: 1.5
length_penalty: 0.8
num_beams: 2
license: apache-2.0
language:
- ru
pipeline_tag: text-generation
widget:
- text: "Может ли встретиться пингвин и белый медведь?"
example_title: Question Answering
- text: "Как зарабатывать много денег обучая модели?"
example_title: Open domain Knoweledge
- text: "Напиши код который выведет Привет Мир"
example_title: Scientific knowledge
library_name: transformers
tags:
- finance
- code
---
<h1 style="font-size: 42px">Instructions ruGPT Medium v0.11_75к_a<h1/>
# Model Summary
> Это ruGPTMedium дообученная в инструктивно-флановом сетапе, она более ли менее зирошотиться и работает лучше чем XGLM1.7b,mgpt на русском язеку
# Quick Start
```python
from transformers import pipeline
#в душе не ебу будет ли норм работать, ставлю жопу автора хф что токенайзер мисматчнет с моделью, вообще грузите по нормальному
pipe = pipeline(model='AlexWortega/instruct_rugptMedium')
pipe('''Как собрать питон код?''')
```
or
```python
from transformers import GPT2TokenizerFast,GPT2LMHeadModel
tokenizer = GPT2TokenizerFast.from_pretrained("sberbank-ai/rugpt3small_based_on_gpt2")
special_tokens_dict = {'additional_special_tokens': ['<code>', '</code>', '<instructionS>', '<instructionE>', '<next>']}
tokenizer.add_special_tokens(special_tokens_dict)
device = 'cuda:1'
model = GPT2LMHeadModel.from_pretrained("ckpts11/sft_0_70000/")
model.to(device)
model.resize_token_embeddings(len(tokenizer))
```
обратите внимание, что лучшие параметры для генерации
```
gen_kwargs = {
"min_length": 20,
"max_new_tokens": 100,
"top_k": 50,
"top_p": 0.9,
"do_sample": True,
"early_stopping": True,
"no_repeat_ngram_size": 2,
"eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.eos_token_id,
"use_cache": True,
"repetition_penalty": 1.5,
"length_penalty": 0.8,
"num_beams": 4,
"num_return_sequences": k
}
```
# License
The weights of Instructions ruGPT Small v0.1a are licensed under version 2.0 of the Apache License.
## Hyperparameters
I used Novograd with a learning rate of 2e-5 and global batch size of 6 (3 for each data parallel worker).
I use both data parallelism and pipeline parallelism to conduct training.
During training, we truncate the input sequence to 1024 tokens, and for input sequence that contains less than 1024 tokens, we concatenate multiple sequences into one long sequence to improve the data efficiency.
# References
#Metrics
SOON
## BibTeX entry and citation info
```bibtex
@article{
title={GPT2xl is underrated task solver},
author={Nickolich Aleksandr, 5Q, datascience, Ilya Gusev, Alex Kukushkin, Karina Romanova, Arseniy Shahmatov, Maksim Gersimenko},
year={2023}
}
``` |