--- datasets: - IlyaGusev/habr - Den4ikAI/russian_instructions - wiki_qa inference: parameters: max_new_tokens: 32 temperature: 1 top_k: 50 top_p: 0.7 do_sample: true license: apache-2.0 language: - ru pipeline_tag: text-generation widget: - text: Чем отличается лось от ежа? example_title: Question Answering - text: Как выпросить повышение? example_title: Logical reasoning - text: Какая температура закипания азота? example_title: Scientific knowledge library_name: transformers tags: - finance - code ---

Instructions ruGPT Small v0.1a

# Model Summary > Я дообучил small rugpt на датасете инструкций, хабра, QA и кода # Quick Start ```python from transformers import pipeline pipe = pipeline(model='AlexWortega/instruct_rugptSmall') pipe('''Как собрать питон код?''') ``` or ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("AlexWortega/instruct_rugptSmall") model = AutoModelForCausalLM.from_pretrained("AlexWortega/instruct_rugptSmall") ``` # License The weights of Instructions ruGPT Small v0.1a are licensed under version 2.0 of the Apache License. ## Hyperparameters I used Novograd with a learning rate of 2e-5 and global batch size of 6 (3 for each data parallel worker). I use both data parallelism and pipeline parallelism to conduct training. During training, we truncate the input sequence to 1024 tokens, and for input sequence that contains less than 1024 tokens, we concatenate multiple sequences into one long sequence to improve the data efficiency. # References #Metrics SOON ## BibTeX entry and citation info ```bibtex @article{ title={GPT2xl is underrated task solver}, author={Nickolich Aleksandr, Karina Romanova, Arseniy Shahmatov, Maksim Gersimenko}, year={2023} } ```