--- base_model: unsloth/Mistral-Small-Instruct-2409 library_name: peft tags: - axolotl - generated_from_trainer model-index: - name: mistral-small-fujin-qlora results: [] --- **NOT FOR PUBLIC USE** This is only public so we can use it with a merging system that doesn't have access to the org. [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml # huggingface-cli login --token $hf_key && wandb login $wandb_key # python -m axolotl.cli.preprocess ms-adventure.yml # accelerate launch -m axolotl.cli.train ms-adventure.yml # python -m axolotl.cli.merge_lora ms-adventure.yml base_model: unsloth/Mistral-Small-Instruct-2409 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false sequence_len: 16384 # 99% vram min_sample_len: 128 bf16: true fp16: tf32: false flash_attention: true special_tokens: # Data dataset_prepared_path: last_run_prepared datasets: - path: botmall/rosier-inf-split-16k type: completion warmup_steps: 20 shuffle_merged_datasets: true save_safetensors: true mlflow_tracking_uri: http://127.0.0.1:7860 mlflow_experiment_name: Default # WandB #wandb_project: Mistral-Small-Skein #wandb_entity: # Iterations num_epochs: 1 # Output output_dir: ./ms-fujin hub_model_id: BeaverAI/mistral-small-fujin-qlora hub_strategy: "checkpoint" # Sampling sample_packing: true pad_to_sequence_len: true # Batching gradient_accumulation_steps: 1 micro_batch_size: 2 eval_batch_size: 2 gradient_checkpointing: 'unsloth' gradient_checkpointing_kwargs: use_reentrant: true unsloth_cross_entropy_loss: true #unsloth_lora_mlp: true #unsloth_lora_qkv: true #unsloth_lora_o: true # Evaluation val_set_size: 100 evals_per_epoch: 5 eval_table_size: eval_max_new_tokens: 256 eval_sample_packing: false # LoRA adapter: qlora lora_model_dir: lora_r: 64 lora_alpha: 128 lora_dropout: 0.125 lora_target_linear: lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: # Optimizer optimizer: paged_adamw_8bit # adamw_8bit lr_scheduler: cosine learning_rate: 0.0001 cosine_min_lr_ratio: 0.1 weight_decay: 0.01 max_grad_norm: 1.0 # Misc train_on_inputs: false group_by_length: false early_stopping_patience: local_rank: logging_steps: 1 xformers_attention: debug: deepspeed: deepspeed_configs/zero3.json # previously blank fsdp: fsdp_config: # Checkpoints resume_from_checkpoint: saves_per_epoch: 5 plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true ```

# mistral-small-fujin-qlora This model is a fine-tuned version of [unsloth/Mistral-Small-Instruct-2409](https://huggingface.co/unsloth/Mistral-Small-Instruct-2409) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9557 | 0.0031 | 1 | 2.6437 | | 1.8648 | 0.2025 | 66 | 2.6013 | | 1.9514 | 0.4049 | 132 | 2.5771 | | 1.9213 | 0.6074 | 198 | 2.5940 | | 1.9094 | 0.8098 | 264 | 2.5938 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.0