AliMMZ commited on
Commit
538458c
·
1 Parent(s): 1d04a27

Push LunarLander-v2 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.26 +/- 23.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9c1e9f160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9c1e9f1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9c1e9f280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9c1e9f310>", "_build": "<function ActorCriticPolicy._build at 0x7fe9c1e9f3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe9c1e9f430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9c1e9f4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe9c1e9f550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9c1e9f5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9c1e9f670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9c1e9f700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe9c1e9a660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670419881410305216, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABVQ70UoIi6gX2DuWI5lTM4JUS7EcWVOAAAgD8AAIA/GvZMPZIfpz8l3+w9UdLTvruIpDw/TbI9AAAAAAAAAACYb72+0FKmPpZWOT7u2ZK+sgoFvmV/jz4AAAAAAAAAAOYwiz0DPpQ+Y15Evi6Oib43dE873VpFvAAAAAAAAAAAM3mSvTRa8T7WFh8+8oqGvq1pST14KAI7AAAAAAAAAACY/Y6+hEBQPtRUPT4/1Je+ZX/YPFZiu7wAAAAAAAAAAG2GdD6XeiU/hw4mvlQ3lL7g/WM9Co03vQAAAAAAAAAAs16ZPUVj+zzbaWm9U+ZpvoLuTT0KWF89AAAAAAAAAAD6ewm++cdtPrmaHz4GZnG+zVBxPSFYtj0AAAAAAAAAAACCyjzs5/i7saY7vPIqnzztSEw9p9WEvQAAgD8AAIA/mhFSO48n0D6OVYE8C+KlvtggAz02oWc9AAAAAAAAAACzkrg99717PsW/bL5FjU++3GA1vcPDj70AAAAAAAAAAABNgbzD0bE/kZdKvx6M/b5QJoI8F+EIPgAAAAAAAAAAzZxsPQTNqz3Y+Xq9D+huvuRWSzzbS1E8AAAAAAAAAABm3Hw9j65Suj7y6TTeD/QvbKZAObsoR7QAAIA/AACAPy07AL54yuM+JiKuPQ2sk74Qjf+7fIcJPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJh5QNuWFcECUhpRSlIwBbJRNLwGMAXSUR0CQpjT1TR6XdX2UKGgGaAloD0MIi8QENfwXb0CUhpRSlGgVTRQBaBZHQJCnBjd56dF1fZQoaAZoCWgPQwh/MsaHWdxuQJSGlFKUaBVNPwFoFkdAkKc2WyC4BnV9lChoBmgJaA9DCO61oPfG/2xAlIaUUpRoFU0ZAWgWR0CQqJgPmPo3dX2UKGgGaAloD0MIjxmojH+GckCUhpRSlGgVTWsBaBZHQJCo6ZQYUFl1fZQoaAZoCWgPQwh+ycaDLX1xQJSGlFKUaBVNbQFoFkdAkKnvp+tr9HV9lChoBmgJaA9DCGiTwydd5nBAlIaUUpRoFU0CAWgWR0CQqe8zQ/ordX2UKGgGaAloD0MIWmd8X5yyckCUhpRSlGgVTTQBaBZHQJCsSH2ys0Z1fZQoaAZoCWgPQwgWbY5zWxpzQJSGlFKUaBVNJQFoFkdAkKx55Rjz7XV9lChoBmgJaA9DCOIC0CjdV29AlIaUUpRoFU0eAWgWR0CQrNCaJAMVdX2UKGgGaAloD0MIIhtIF9tqckCUhpRSlGgVTZ8BaBZHQJCs2nMt9QZ1fZQoaAZoCWgPQwikjLgAtNRsQJSGlFKUaBVNHQFoFkdAkKza37UG3XV9lChoBmgJaA9DCG743XQL2HBAlIaUUpRoFU03AWgWR0CQre6EJ0GNdX2UKGgGaAloD0MIGjOJesEBb0CUhpRSlGgVTZ8BaBZHQJCuvP8hs691fZQoaAZoCWgPQwhkV1pGKh9xQJSGlFKUaBVNHQFoFkdAkK7lDrqt5nV9lChoBmgJaA9DCAX6RJ4kMnBAlIaUUpRoFU0UAWgWR0CQr6iS7oStdX2UKGgGaAloD0MIDksDP6oUcUCUhpRSlGgVTWwBaBZHQJCvuPIXCTF1fZQoaAZoCWgPQwjJIk28A+duQJSGlFKUaBVNGQFoFkdAkLEy2H+IdnV9lChoBmgJaA9DCItwk1Hls3BAlIaUUpRoFU0PAWgWR0CQsTrsjVx0dX2UKGgGaAloD0MIw4Nm131ycUCUhpRSlGgVTVYBaBZHQJCxUT37DVJ1fZQoaAZoCWgPQwhUkJ+NXIJwQJSGlFKUaBVL/2gWR0CQsazdUKiPdX2UKGgGaAloD0MIq5ffabIyY0CUhpRSlGgVTegDaBZHQJCy73Hq/ud1fZQoaAZoCWgPQwjJVwIpMVtxQJSGlFKUaBVL5mgWR0CQs09Zid8RdX2UKGgGaAloD0MImsx4W2lAckCUhpRSlGgVTR0BaBZHQJC0eOYIBzV1fZQoaAZoCWgPQwha9E4FXFZtQJSGlFKUaBVNHQFoFkdAkLSjZL7GenV9lChoBmgJaA9DCKUsQxzrvHFAlIaUUpRoFU0rAWgWR0CQtWZUDMePdX2UKGgGaAloD0MI24toOyaQcUCUhpRSlGgVTRMBaBZHQJC1ywV0tAd1fZQoaAZoCWgPQwikiXeAp7tvQJSGlFKUaBVNMQFoFkdAkLfHtrsSkHV9lChoBmgJaA9DCFaA7zbvwXJAlIaUUpRoFU0xAWgWR0CQt/d2gWaddX2UKGgGaAloD0MIDHiZYWOHcECUhpRSlGgVTR4BaBZHQJC4SPS2H+J1fZQoaAZoCWgPQwiV1AloouNwQJSGlFKUaBVNJwFoFkdAkLiHw9aEBnV9lChoBmgJaA9DCIKufQF9y3FAlIaUUpRoFU0AAWgWR0CQuS1h9b5edX2UKGgGaAloD0MIPUhPkcMVbUCUhpRSlGgVTR0BaBZHQJC6C4y44Id1fZQoaAZoCWgPQwja5PBJp1xvQJSGlFKUaBVNIAFoFkdAkLodvKlpGnV9lChoBmgJaA9DCHJQwkzbAWxAlIaUUpRoFU0dAWgWR0CQupmois4ldX2UKGgGaAloD0MI0H05s11JR0CUhpRSlGgVS99oFkdAkLqZmqYJFHV9lChoBmgJaA9DCA0bZf0mk3BAlIaUUpRoFU07AmgWR0CQu4jjrAxjdX2UKGgGaAloD0MIpz/7kSIIUECUhpRSlGgVS9toFkdAkLvEipvP1XV9lChoBmgJaA9DCJKTiVtFJ3JAlIaUUpRoFU0bAWgWR0CQu/eLehwmdX2UKGgGaAloD0MIpmCNs2mucECUhpRSlGgVTScBaBZHQJC/AeHSF491fZQoaAZoCWgPQwimgLT/QdJwQJSGlFKUaBVNLAFoFkdAkL+sfms/6nV9lChoBmgJaA9DCGgJMgLqZXBAlIaUUpRoFU1ZAWgWR0CQv7/kNnXedX2UKGgGaAloD0MIasAg6VPZcECUhpRSlGgVTXoCaBZHQJDAXHNorWl1fZQoaAZoCWgPQwgQscHCSfBvQJSGlFKUaBVNJwFoFkdAkMGbNwBHTnV9lChoBmgJaA9DCGd+NQeItGxAlIaUUpRoFU0sAWgWR0CQwZv7FbV0dX2UKGgGaAloD0MIur963LfAbkCUhpRSlGgVTScBaBZHQJDCJe9i+cp1fZQoaAZoCWgPQwg6QDBHD49xQJSGlFKUaBVNMgFoFkdAkMJIn4O+ZnV9lChoBmgJaA9DCGL03EIX7XFAlIaUUpRoFU0DAWgWR0CQwoMMqjJudX2UKGgGaAloD0MI7X+AtapscUCUhpRSlGgVTRYBaBZHQJDU6JwbVBl1fZQoaAZoCWgPQwhJu9HHfC1sQJSGlFKUaBVNHQFoFkdAkNWdlyzXz3V9lChoBmgJaA9DCE9bI4JxbnFAlIaUUpRoFU0GAWgWR0CQ1djz7MxHdX2UKGgGaAloD0MIHNMTlvi1b0CUhpRSlGgVTVMBaBZHQJDV50OmR/51fZQoaAZoCWgPQwiA1vz4C1JyQJSGlFKUaBVNKAFoFkdAkNXrfcer/HV9lChoBmgJaA9DCNY2xeOiYHFAlIaUUpRoFU0MAWgWR0CQ1i9ehPCVdX2UKGgGaAloD0MItDnObULNb0CUhpRSlGgVTTsBaBZHQJDXaAe7tiR1fZQoaAZoCWgPQwi0keumFHluQJSGlFKUaBVNGgFoFkdAkNj8brC3w3V9lChoBmgJaA9DCEM9fQQ+43BAlIaUUpRoFU0VAWgWR0CQ2gKw6hg3dX2UKGgGaAloD0MIg/dVuZAHckCUhpRSlGgVTTUBaBZHQJDaWlwcYIl1fZQoaAZoCWgPQwi1/wHWqrdyQJSGlFKUaBVNIgFoFkdAkNuQQcxTKnV9lChoBmgJaA9DCFNaf0sAQ3JAlIaUUpRoFU0fAWgWR0CQ3ArK/20zdX2UKGgGaAloD0MI1uHoKh0KcECUhpRSlGgVTSIBaBZHQJDcSXnhbW51fZQoaAZoCWgPQwj4jERoBNZtQJSGlFKUaBVNQQFoFkdAkNysYqG1yHV9lChoBmgJaA9DCMcqpWf6q3BAlIaUUpRoFU0sAWgWR0CQ3OQ+EAYIdX2UKGgGaAloD0MIcLVOXE50ckCUhpRSlGgVTUYBaBZHQJDeMR/ViF11fZQoaAZoCWgPQwiCrn0BvfxtQJSGlFKUaBVNHgFoFkdAkN5zc6/7BXV9lChoBmgJaA9DCINMMnKWVW9AlIaUUpRoFU0tAWgWR0CQ3o38GcFydX2UKGgGaAloD0MIAvT7/s0jcUCUhpRSlGgVTTQBaBZHQJDerZRKpUB1fZQoaAZoCWgPQwhkIqXZPKJwQJSGlFKUaBVNTgFoFkdAkN8iFbmlqXV9lChoBmgJaA9DCBx6i4e3xnFAlIaUUpRoFU1MAWgWR0CQ31Vs1sLwdX2UKGgGaAloD0MIyqMbYZEBckCUhpRSlGgVTSYBaBZHQJDgCCXhOxl1fZQoaAZoCWgPQwhsX0AvXBBtQJSGlFKUaBVNDwFoFkdAkOJXVf/m1nV9lChoBmgJaA9DCGu7Cb4pS3JAlIaUUpRoFU1RAWgWR0CQ4weoDPnkdX2UKGgGaAloD0MIWKzhInfOckCUhpRSlGgVTTEBaBZHQJDjF97Wuox1fZQoaAZoCWgPQwh7Lei9MZlsQJSGlFKUaBVNBQFoFkdAkOM0hib2DnV9lChoBmgJaA9DCD25pkBmeHJAlIaUUpRoFU0uAWgWR0CQ5NwpvxYrdX2UKGgGaAloD0MIL4uJzUdkbUCUhpRSlGgVTScBaBZHQJDlOySmqHZ1fZQoaAZoCWgPQwhMqODwgi9uQJSGlFKUaBVNNQFoFkdAkOVUb961LXV9lChoBmgJaA9DCOYffZOmXXJAlIaUUpRoFUv/aBZHQJDlx/smfGx1fZQoaAZoCWgPQwjJdVPKK5twQJSGlFKUaBVNIwFoFkdAkOaoFeOXFHV9lChoBmgJaA9DCCLgEKpULXFAlIaUUpRoFU0jAWgWR0CQ5v078vVWdX2UKGgGaAloD0MIB+qUR7emb0CUhpRSlGgVTVsBaBZHQJDnD7DVH4J1fZQoaAZoCWgPQwigFRiyeulwQJSGlFKUaBVNIgFoFkdAkOcbAgxJunV9lChoBmgJaA9DCJVgcTjzKnFAlIaUUpRoFU1EAWgWR0CQ6IaAFxGUdX2UKGgGaAloD0MIeuOkMG9ecECUhpRSlGgVTSIBaBZHQJDooe/5+H91fZQoaAZoCWgPQwgL68a7I3FyQJSGlFKUaBVNTAFoFkdAkOjy8J2MbXV9lChoBmgJaA9DCEshkEtcL3FAlIaUUpRoFUvvaBZHQJDqHy9VWCF1fZQoaAZoCWgPQwil3ehjPqDuP5SGlFKUaBVNAAFoFkdAkOqAq/dqL3V9lChoBmgJaA9DCEuS5/q+nHJAlIaUUpRoFU09AWgWR0CQ66CuEEkjdX2UKGgGaAloD0MIPXyZKIIXcECUhpRSlGgVTS4BaBZHQJDrz/DLr5Z1fZQoaAZoCWgPQwgB9tGpq65yQJSGlFKUaBVNEwFoFkdAkOzRO1v2oXV9lChoBmgJaA9DCBX9oZlnWnBAlIaUUpRoFU0LAWgWR0CQ7OoPkJa8dX2UKGgGaAloD0MIHSCYo8e3cUCUhpRSlGgVTRYBaBZHQJDtxNXYDkl1fZQoaAZoCWgPQwg7w9SWehdyQJSGlFKUaBVNAQFoFkdAkO38kY4yXXV9lChoBmgJaA9DCAyP/SyW7m5AlIaUUpRoFUv3aBZHQJDuAw7DEWJ1fZQoaAZoCWgPQwiOIJViR59IQJSGlFKUaBVLzWgWR0CQ7l8jiXIEdX2UKGgGaAloD0MIlIPZBJhdcECUhpRSlGgVTUQBaBZHQJDupccENfB1fZQoaAZoCWgPQwhL6ZleYl1bQJSGlFKUaBVN6ANoFkdAkO64TGo73nV9lChoBmgJaA9DCOZ4BaInDXBAlIaUUpRoFU0iAWgWR0CQ7zDNQj2SdX2UKGgGaAloD0MIL6aZ7rVBcUCUhpRSlGgVTRcBaBZHQJDwvCgsbvR1fZQoaAZoCWgPQwiTUtDtpbJwQJSGlFKUaBVNRQFoFkdAkPGy8e0XxnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56b2ac1604fd56d9bc8de34eae116217c93197c92343a87fa7fe912c25d12143
3
+ size 147146
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9c1e9f160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9c1e9f1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9c1e9f280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9c1e9f310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe9c1e9f3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe9c1e9f430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9c1e9f4c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe9c1e9f550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9c1e9f5e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9c1e9f670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9c1e9f700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe9c1e9a660>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670419881410305216,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABVQ70UoIi6gX2DuWI5lTM4JUS7EcWVOAAAgD8AAIA/GvZMPZIfpz8l3+w9UdLTvruIpDw/TbI9AAAAAAAAAACYb72+0FKmPpZWOT7u2ZK+sgoFvmV/jz4AAAAAAAAAAOYwiz0DPpQ+Y15Evi6Oib43dE873VpFvAAAAAAAAAAAM3mSvTRa8T7WFh8+8oqGvq1pST14KAI7AAAAAAAAAACY/Y6+hEBQPtRUPT4/1Je+ZX/YPFZiu7wAAAAAAAAAAG2GdD6XeiU/hw4mvlQ3lL7g/WM9Co03vQAAAAAAAAAAs16ZPUVj+zzbaWm9U+ZpvoLuTT0KWF89AAAAAAAAAAD6ewm++cdtPrmaHz4GZnG+zVBxPSFYtj0AAAAAAAAAAACCyjzs5/i7saY7vPIqnzztSEw9p9WEvQAAgD8AAIA/mhFSO48n0D6OVYE8C+KlvtggAz02oWc9AAAAAAAAAACzkrg99717PsW/bL5FjU++3GA1vcPDj70AAAAAAAAAAABNgbzD0bE/kZdKvx6M/b5QJoI8F+EIPgAAAAAAAAAAzZxsPQTNqz3Y+Xq9D+huvuRWSzzbS1E8AAAAAAAAAABm3Hw9j65Suj7y6TTeD/QvbKZAObsoR7QAAIA/AACAPy07AL54yuM+JiKuPQ2sk74Qjf+7fIcJPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJh5QNuWFcECUhpRSlIwBbJRNLwGMAXSUR0CQpjT1TR6XdX2UKGgGaAloD0MIi8QENfwXb0CUhpRSlGgVTRQBaBZHQJCnBjd56dF1fZQoaAZoCWgPQwh/MsaHWdxuQJSGlFKUaBVNPwFoFkdAkKc2WyC4BnV9lChoBmgJaA9DCO61oPfG/2xAlIaUUpRoFU0ZAWgWR0CQqJgPmPo3dX2UKGgGaAloD0MIjxmojH+GckCUhpRSlGgVTWsBaBZHQJCo6ZQYUFl1fZQoaAZoCWgPQwh+ycaDLX1xQJSGlFKUaBVNbQFoFkdAkKnvp+tr9HV9lChoBmgJaA9DCGiTwydd5nBAlIaUUpRoFU0CAWgWR0CQqe8zQ/ordX2UKGgGaAloD0MIWmd8X5yyckCUhpRSlGgVTTQBaBZHQJCsSH2ys0Z1fZQoaAZoCWgPQwgWbY5zWxpzQJSGlFKUaBVNJQFoFkdAkKx55Rjz7XV9lChoBmgJaA9DCOIC0CjdV29AlIaUUpRoFU0eAWgWR0CQrNCaJAMVdX2UKGgGaAloD0MIIhtIF9tqckCUhpRSlGgVTZ8BaBZHQJCs2nMt9QZ1fZQoaAZoCWgPQwikjLgAtNRsQJSGlFKUaBVNHQFoFkdAkKza37UG3XV9lChoBmgJaA9DCG743XQL2HBAlIaUUpRoFU03AWgWR0CQre6EJ0GNdX2UKGgGaAloD0MIGjOJesEBb0CUhpRSlGgVTZ8BaBZHQJCuvP8hs691fZQoaAZoCWgPQwhkV1pGKh9xQJSGlFKUaBVNHQFoFkdAkK7lDrqt5nV9lChoBmgJaA9DCAX6RJ4kMnBAlIaUUpRoFU0UAWgWR0CQr6iS7oStdX2UKGgGaAloD0MIDksDP6oUcUCUhpRSlGgVTWwBaBZHQJCvuPIXCTF1fZQoaAZoCWgPQwjJIk28A+duQJSGlFKUaBVNGQFoFkdAkLEy2H+IdnV9lChoBmgJaA9DCItwk1Hls3BAlIaUUpRoFU0PAWgWR0CQsTrsjVx0dX2UKGgGaAloD0MIw4Nm131ycUCUhpRSlGgVTVYBaBZHQJCxUT37DVJ1fZQoaAZoCWgPQwhUkJ+NXIJwQJSGlFKUaBVL/2gWR0CQsazdUKiPdX2UKGgGaAloD0MIq5ffabIyY0CUhpRSlGgVTegDaBZHQJCy73Hq/ud1fZQoaAZoCWgPQwjJVwIpMVtxQJSGlFKUaBVL5mgWR0CQs09Zid8RdX2UKGgGaAloD0MImsx4W2lAckCUhpRSlGgVTR0BaBZHQJC0eOYIBzV1fZQoaAZoCWgPQwha9E4FXFZtQJSGlFKUaBVNHQFoFkdAkLSjZL7GenV9lChoBmgJaA9DCKUsQxzrvHFAlIaUUpRoFU0rAWgWR0CQtWZUDMePdX2UKGgGaAloD0MI24toOyaQcUCUhpRSlGgVTRMBaBZHQJC1ywV0tAd1fZQoaAZoCWgPQwikiXeAp7tvQJSGlFKUaBVNMQFoFkdAkLfHtrsSkHV9lChoBmgJaA9DCFaA7zbvwXJAlIaUUpRoFU0xAWgWR0CQt/d2gWaddX2UKGgGaAloD0MIDHiZYWOHcECUhpRSlGgVTR4BaBZHQJC4SPS2H+J1fZQoaAZoCWgPQwiV1AloouNwQJSGlFKUaBVNJwFoFkdAkLiHw9aEBnV9lChoBmgJaA9DCIKufQF9y3FAlIaUUpRoFU0AAWgWR0CQuS1h9b5edX2UKGgGaAloD0MIPUhPkcMVbUCUhpRSlGgVTR0BaBZHQJC6C4y44Id1fZQoaAZoCWgPQwja5PBJp1xvQJSGlFKUaBVNIAFoFkdAkLodvKlpGnV9lChoBmgJaA9DCHJQwkzbAWxAlIaUUpRoFU0dAWgWR0CQupmois4ldX2UKGgGaAloD0MI0H05s11JR0CUhpRSlGgVS99oFkdAkLqZmqYJFHV9lChoBmgJaA9DCA0bZf0mk3BAlIaUUpRoFU07AmgWR0CQu4jjrAxjdX2UKGgGaAloD0MIpz/7kSIIUECUhpRSlGgVS9toFkdAkLvEipvP1XV9lChoBmgJaA9DCJKTiVtFJ3JAlIaUUpRoFU0bAWgWR0CQu/eLehwmdX2UKGgGaAloD0MIpmCNs2mucECUhpRSlGgVTScBaBZHQJC/AeHSF491fZQoaAZoCWgPQwimgLT/QdJwQJSGlFKUaBVNLAFoFkdAkL+sfms/6nV9lChoBmgJaA9DCGgJMgLqZXBAlIaUUpRoFU1ZAWgWR0CQv7/kNnXedX2UKGgGaAloD0MIasAg6VPZcECUhpRSlGgVTXoCaBZHQJDAXHNorWl1fZQoaAZoCWgPQwgQscHCSfBvQJSGlFKUaBVNJwFoFkdAkMGbNwBHTnV9lChoBmgJaA9DCGd+NQeItGxAlIaUUpRoFU0sAWgWR0CQwZv7FbV0dX2UKGgGaAloD0MIur963LfAbkCUhpRSlGgVTScBaBZHQJDCJe9i+cp1fZQoaAZoCWgPQwg6QDBHD49xQJSGlFKUaBVNMgFoFkdAkMJIn4O+ZnV9lChoBmgJaA9DCGL03EIX7XFAlIaUUpRoFU0DAWgWR0CQwoMMqjJudX2UKGgGaAloD0MI7X+AtapscUCUhpRSlGgVTRYBaBZHQJDU6JwbVBl1fZQoaAZoCWgPQwhJu9HHfC1sQJSGlFKUaBVNHQFoFkdAkNWdlyzXz3V9lChoBmgJaA9DCE9bI4JxbnFAlIaUUpRoFU0GAWgWR0CQ1djz7MxHdX2UKGgGaAloD0MIHNMTlvi1b0CUhpRSlGgVTVMBaBZHQJDV50OmR/51fZQoaAZoCWgPQwiA1vz4C1JyQJSGlFKUaBVNKAFoFkdAkNXrfcer/HV9lChoBmgJaA9DCNY2xeOiYHFAlIaUUpRoFU0MAWgWR0CQ1i9ehPCVdX2UKGgGaAloD0MItDnObULNb0CUhpRSlGgVTTsBaBZHQJDXaAe7tiR1fZQoaAZoCWgPQwi0keumFHluQJSGlFKUaBVNGgFoFkdAkNj8brC3w3V9lChoBmgJaA9DCEM9fQQ+43BAlIaUUpRoFU0VAWgWR0CQ2gKw6hg3dX2UKGgGaAloD0MIg/dVuZAHckCUhpRSlGgVTTUBaBZHQJDaWlwcYIl1fZQoaAZoCWgPQwi1/wHWqrdyQJSGlFKUaBVNIgFoFkdAkNuQQcxTKnV9lChoBmgJaA9DCFNaf0sAQ3JAlIaUUpRoFU0fAWgWR0CQ3ArK/20zdX2UKGgGaAloD0MI1uHoKh0KcECUhpRSlGgVTSIBaBZHQJDcSXnhbW51fZQoaAZoCWgPQwj4jERoBNZtQJSGlFKUaBVNQQFoFkdAkNysYqG1yHV9lChoBmgJaA9DCMcqpWf6q3BAlIaUUpRoFU0sAWgWR0CQ3OQ+EAYIdX2UKGgGaAloD0MIcLVOXE50ckCUhpRSlGgVTUYBaBZHQJDeMR/ViF11fZQoaAZoCWgPQwiCrn0BvfxtQJSGlFKUaBVNHgFoFkdAkN5zc6/7BXV9lChoBmgJaA9DCINMMnKWVW9AlIaUUpRoFU0tAWgWR0CQ3o38GcFydX2UKGgGaAloD0MIAvT7/s0jcUCUhpRSlGgVTTQBaBZHQJDerZRKpUB1fZQoaAZoCWgPQwhkIqXZPKJwQJSGlFKUaBVNTgFoFkdAkN8iFbmlqXV9lChoBmgJaA9DCBx6i4e3xnFAlIaUUpRoFU1MAWgWR0CQ31Vs1sLwdX2UKGgGaAloD0MIyqMbYZEBckCUhpRSlGgVTSYBaBZHQJDgCCXhOxl1fZQoaAZoCWgPQwhsX0AvXBBtQJSGlFKUaBVNDwFoFkdAkOJXVf/m1nV9lChoBmgJaA9DCGu7Cb4pS3JAlIaUUpRoFU1RAWgWR0CQ4weoDPnkdX2UKGgGaAloD0MIWKzhInfOckCUhpRSlGgVTTEBaBZHQJDjF97Wuox1fZQoaAZoCWgPQwh7Lei9MZlsQJSGlFKUaBVNBQFoFkdAkOM0hib2DnV9lChoBmgJaA9DCD25pkBmeHJAlIaUUpRoFU0uAWgWR0CQ5NwpvxYrdX2UKGgGaAloD0MIL4uJzUdkbUCUhpRSlGgVTScBaBZHQJDlOySmqHZ1fZQoaAZoCWgPQwhMqODwgi9uQJSGlFKUaBVNNQFoFkdAkOVUb961LXV9lChoBmgJaA9DCOYffZOmXXJAlIaUUpRoFUv/aBZHQJDlx/smfGx1fZQoaAZoCWgPQwjJdVPKK5twQJSGlFKUaBVNIwFoFkdAkOaoFeOXFHV9lChoBmgJaA9DCCLgEKpULXFAlIaUUpRoFU0jAWgWR0CQ5v078vVWdX2UKGgGaAloD0MIB+qUR7emb0CUhpRSlGgVTVsBaBZHQJDnD7DVH4J1fZQoaAZoCWgPQwigFRiyeulwQJSGlFKUaBVNIgFoFkdAkOcbAgxJunV9lChoBmgJaA9DCJVgcTjzKnFAlIaUUpRoFU1EAWgWR0CQ6IaAFxGUdX2UKGgGaAloD0MIeuOkMG9ecECUhpRSlGgVTSIBaBZHQJDooe/5+H91fZQoaAZoCWgPQwgL68a7I3FyQJSGlFKUaBVNTAFoFkdAkOjy8J2MbXV9lChoBmgJaA9DCEshkEtcL3FAlIaUUpRoFUvvaBZHQJDqHy9VWCF1fZQoaAZoCWgPQwil3ehjPqDuP5SGlFKUaBVNAAFoFkdAkOqAq/dqL3V9lChoBmgJaA9DCEuS5/q+nHJAlIaUUpRoFU09AWgWR0CQ66CuEEkjdX2UKGgGaAloD0MIPXyZKIIXcECUhpRSlGgVTS4BaBZHQJDrz/DLr5Z1fZQoaAZoCWgPQwgB9tGpq65yQJSGlFKUaBVNEwFoFkdAkOzRO1v2oXV9lChoBmgJaA9DCBX9oZlnWnBAlIaUUpRoFU0LAWgWR0CQ7OoPkJa8dX2UKGgGaAloD0MIHSCYo8e3cUCUhpRSlGgVTRYBaBZHQJDtxNXYDkl1fZQoaAZoCWgPQwg7w9SWehdyQJSGlFKUaBVNAQFoFkdAkO38kY4yXXV9lChoBmgJaA9DCAyP/SyW7m5AlIaUUpRoFUv3aBZHQJDuAw7DEWJ1fZQoaAZoCWgPQwiOIJViR59IQJSGlFKUaBVLzWgWR0CQ7l8jiXIEdX2UKGgGaAloD0MIlIPZBJhdcECUhpRSlGgVTUQBaBZHQJDupccENfB1fZQoaAZoCWgPQwhL6ZleYl1bQJSGlFKUaBVN6ANoFkdAkO64TGo73nV9lChoBmgJaA9DCOZ4BaInDXBAlIaUUpRoFU0iAWgWR0CQ7zDNQj2SdX2UKGgGaAloD0MIL6aZ7rVBcUCUhpRSlGgVTRcBaBZHQJDwvCgsbvR1fZQoaAZoCWgPQwiTUtDtpbJwQJSGlFKUaBVNRQFoFkdAkPGy8e0XxnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2ea8becc05dbc1bb0426f975fb3e4755eecb6c3193843ba8220da47747b4459
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9500a5c5365084cfafbb9d4897ff4b644ce6d45aa7ca1fab8da12c388111e608
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (231 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.2629136913501, "std_reward": 23.968852613129357, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T13:59:53.317946"}