File size: 5,246 Bytes
87ce8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import re
import math
import json
import argparse
import warnings
import traceback

from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader

import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init

# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


class EgoschemaDataset(Dataset):

    video_formats = ['.mp4', '.avi', '.mov', '.mkv']

    def __init__(self, data_folder, data_list, processor):
        self.data_folder = data_folder
        self.data_list = data_list
        self.processor = processor

    def __len__(self):
        return len(self.data_list)
    
    def __getitem__(self, idx):
        line = self.data_list[idx]
        q_uid = line['q_uid']

        for fmt in self.video_formats:  # Added this line
            temp_path = os.path.join(self.data_folder, f"{q_uid}{fmt}")
            if os.path.exists(temp_path):
                video_path = temp_path
                break

        video_tensor = self.processor(video_path)

        question = line['question']
        a0 = line['option 0']
        a1 = line['option 1']
        a2 = line['option 2']
        a3 = line['option 3']
        a4 = line['option 4']
        axs = [a0, a1, a2, a3, a4]
        ops = ['(A)', '(B)', '(C)', '(D)', '(E)']

        instruct = f'Select the best answer to the following multiple-choice question based on the video.\n{question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\nAnswer with the option\'s letter from the given choices directly and only give the best option. The best answer is: ' 

        return {
            'q_uid': q_uid,
            'video': video_tensor, 
            'instruct': instruct,
        }


def build_egoschema_eval(args, processor):
    questions = json.load(open(args.question_file, "r"))
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    dataset = EgoschemaDataset(args.video_folder, questions, processor)
    dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)

    return dataloader


def egoschema_dump(ans_file, line, outputs):
    for idx, output in enumerate(outputs):
        q_uid = line['q_uid'][idx]
        instruct = line['instruct'][idx]
        letters = ['A', 'B', 'C', 'D', 'E']

        output = output.replace('answer', '')
        output = output.replace('Answer', '')
        pred_answer = re.findall('[\(\ ]*[A-E][\)\ ]*', output)
        try:
            
            assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(line['q_uid'], instruct, output)
            pred_answer = pred_answer[0].strip()
            pred_answer = pred_answer.strip('()')
            pred_idx = letters.index(pred_answer)
        except:
            traceback.print_exc()
            pred_idx = 2

        ans_file.write(f'{q_uid}, {pred_idx}\n')


def run_inference(args):
    disable_torch_init()

    model, processor, tokenizer = model_init(args.model_path)

    answer_file = os.path.expanduser(args.answer_file)
    os.makedirs(os.path.dirname(answer_file), exist_ok=True)
    ans_file = open(answer_file, "w")

    val_loader = build_egoschema_eval(args, processor['video'])

    # Iterate over each sample in the ground truth file
    for i, line in enumerate(tqdm(val_loader)):
        video_tensor = line['video'][0]
        instruct = line['instruct'][0]

        try:
            pred = mm_infer(
                video_tensor,
                instruct,
                model=model,
                tokenizer=tokenizer,
                modal='video',
                do_sample=False,
            )
        except:
            traceback.print_exc()
            pred = 'C'

        egoschema_dump(ans_file, line, [pred])

    ans_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Multiple-Choice Video QA Evaluation Script.')

    parser.add_argument('--model-path', help='', required=True)
    parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
    parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
    parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--device", type=str, required=False, default='cuda:0')
    parser.add_argument("--batch-size", type=int, default=1)
    parser.add_argument("--num-workers", type=int, default=8)
    args = parser.parse_args()

    run_inference(args)