File size: 4,955 Bytes
87ce8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import re
import math
import json
import argparse
import warnings
from tqdm import tqdm

import torch
from torch.utils.data import Dataset, DataLoader

import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init

# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


class VCGPTDataset(Dataset):

    video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']

    def __init__(self, data_list, processor):
        self.data_list = data_list
        self.processor = processor

    def __len__(self):
        return len(self.data_list)
    
    def __getitem__(self, idx):
        line = self.data_list[idx]
        question1 = line['Q1']
        question2 = line['Q2']
        answer = line['A']
        video_name = line['video_name']

        for fmt in self.video_formats:  # Added this line
            temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
            if os.path.exists(temp_path):
                video_path = temp_path
                break

        video_tensor = self.processor(video_path)

        return {
            'video': video_tensor,
            'video_name': video_name,
            'question1': question1,
            'question2': question2,
            'answer': answer,
        }


def collate_fn(batch):
    vid = [x['video'] for x in batch]
    v_id = [x['video_name'] for x in batch]
    qus1 = [x['question1'] for x in batch]
    qus2 = [x['question2'] for x in batch]
    ans = [x['answer'] for x in batch]
    vid = torch.stack(vid, dim=0)
    return vid, v_id, qus1, qus2, ans


def run_inference(args):
    disable_torch_init()

    # Initialize the model
    model, processor, tokenizer = model_init(args.model_path)

    questions = json.load(open(args.question_file, "r"))
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)

    assert args.batch_size == 1, "Batch size must be 1 for inference"
    dataset = VCGPTDataset(questions, processor['video'])
    dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)

    answer_file = os.path.expanduser(args.answer_file)
    os.makedirs(os.path.dirname(answer_file), exist_ok=True)
    ans_file = open(answer_file, "w")

    output_list = []  # List to store the output results

    # Iterate over each sample in the ground truth file
    for i, (video_tensors, video_names, questions1, questions2, answers) in enumerate(tqdm(dataloader)):

        # reduce batch dimension
        video_tensor = video_tensors[0]
        video_name = video_names[0]
        question1 = questions1[0]
        question2 = questions2[0]
        answer = answers[0]

        output1 = mm_infer(
            video_tensor,
            question1, 
            model=model,
            tokenizer=tokenizer,
            modal='video',
            do_sample=False,
        )

        output2 = mm_infer(
            video_tensor,
            question2,
            model=model,
            tokenizer=tokenizer,
            do_sample=False,
            modal='video',
        )

        qa = {'video_name': video_name, 'Q1': question1, 'Q2': question2, 'A': answer, 'P1': output1, 'P2': output2}

        ans_file.write(json.dumps(qa) + "\n")

    ans_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    # Define the command-line arguments
    parser.add_argument('--model-path', help='', required=True)
    parser.add_argument('--model_base', help='', default=None, type=str, required=False)
    parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
    parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
    parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
    parser.add_argument("--conv-mode", type=str, default="llava_v1")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--device", type=str, required=False, default='cuda:0')
    parser.add_argument("--model_max_length", type=int, required=False, default=2048)
    parser.add_argument("--batch-size", type=int, required=False, default=1)
    parser.add_argument("--num-workers", type=int, required=False, default=8)

    args = parser.parse_args()

    run_inference(args)