File size: 10,946 Bytes
87ce8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import re
import json
import argparse
from typing import List, Dict, Optional, Union

CATEGORIES = [
    "Knowledge",
    "Film & Television",
    "Sports Competition",
    "Artistic Performance",
    "Life Record",
    "Multilingual"
]

SUB_CATEGORIES = [
    "Humanity & History",
    "Literature & Art",
    "Biology & Medicine",
    "Finance & Commerce",
    "Astronomy",
    "Geography",
    "Law",
    "Life Tip",
    "Technology",
    "Animation",
    "Movie & TV Show",
    "Documentary",
    "News Report",
    "Esports",
    "Basketball",
    "Football",
    "Athletics",
    "Other Sports",
    "Stage Play",
    "Magic Show",
    "Variety Show",
    "Acrobatics",
    "Handicraft",
    "Food",
    "Fashion",
    "Daily Life",
    "Travel",
    "Pet & Animal",
    "Exercise",
    "Multilingual"
]

TASK_CATEGORIES = [
    "Temporal Perception",
    "Spatial Perception",
    "Attribute Perception",
    "Action Recognition",
    "Object Recognition",
    "OCR Problems",
    "Counting Problem",
    "Temporal Reasoning",
    "Spatial Reasoning",
    "Action Reasoning",
    "Object Reasoning",
    "Information Synopsis",
]


def extract_characters_regex(s):
    s = s.strip()
    answer_prefixes = [
        "The best answer is",
        "The correct answer is",
        "The answer is",
        "The answer",
        "The best option is"
        "The correct option is",
        "Best answer:"
        "Best option:",
    ]
    for answer_prefix in answer_prefixes:
        s = s.replace(answer_prefix, "")

    if len(s.split()) > 10 and not re.search("[ABCD]", s):
        return ""
    matches = re.search(r'[ABCD]', s)
    if matches is None:
        return ""
    return matches[0]


def eval_your_results(
        your_results_path: str, 
        video_types: Optional[Union[List[str], str]] = None,
        skip_missing: Optional[bool] = True,
        return_categories_accuracy: Optional[bool] = True,
        return_sub_categories_accuracy: Optional[bool] = False,
        return_task_types_accuracy: Optional[bool] = False,
        gt_answer_key: Optional[str] = "answer",
        your_answer_key: Optional[str] = "response"

    ):
    """
    Evaluate your results against the ground truth

    Args:
    - your_results_path (str): Path to your results file
    - video_types (Optional[List[str], str]): List of video types to evaluate. 
    - skip_missing (Optional[bool]): If True, missing files will be skipped. If False, an error will be raised if there are missing files.
    - return_categories_accuracy (Optional[bool]): If True, the accuracy for each video category will be returned.
    - return_sub_categories_accuracy (Optional[bool]): If True, the accuracy for each video sub category will be returned.
    - return_task_types_accuracy (Optional[bool]): If True, the accuracy for each task category will be returned.
    - gt_answer_key (Optional[str]): Key to access the ground truth answer in the results file.
    - your_answer_key (Optional[str]): Key to access your answer in the results file.
    """

    # Load your results
    with open(your_results_path, 'r') as f:
        your_results = json.load(f)

    if isinstance(video_types, str):
        video_types = video_types.split(",")

    q_type_dict = {}
    v_type_dict = {}
    v_sub_type_dict = {}


    for video_type in video_types:

        # Filter your results based on video types
        your_results_video_type = [item for item in your_results if item["duration"] == video_type]

        # Task Categories
        q_type_dict[video_type] = {}
        for q_type in TASK_CATEGORIES:
            q_type_dict[video_type][q_type] = {"correct": 0, "answered": 0}

        # Video categories
        v_type_dict[video_type] = {}
        for v_type in CATEGORIES:
            v_type_dict[video_type][v_type] = {"correct": 0, "answered": 0}
        
        v_sub_type_dict[video_type] = {}
        for v_sub_type in SUB_CATEGORIES:
            v_sub_type_dict[video_type][v_sub_type] = {"correct": 0, "answered": 0}

        if not skip_missing:
            # Check if the number of files in your results and ground truth are the same
            assert len(your_results_video_type) == 300, f"Number of files in {video_type} is not 300. Check if there are missing files."

        for item in your_results_video_type:

            if skip_missing and item["missing"]:
                continue

            # Get the video category, sub category and question category
            video_category = item["domain"]
            video_sub_category = item["sub_category"]
            
            questions = item["questions"]

            for question in questions:
                q_type = question["task_type"]

                # Get the ground truth and your response
                gt_answer = question[gt_answer_key]
                response = question[your_answer_key]

                # Extract the answer from the response
                extration = extract_characters_regex(response)
    
                if extration != "":
                    q_type_dict[video_type][q_type]["answered"] += 1
                    q_type_dict[video_type][q_type]["correct"] += extration == gt_answer

                    v_type_dict[video_type][video_category]["answered"] += 1
                    v_type_dict[video_type][video_category]["correct"] += extration == gt_answer

                    v_sub_type_dict[video_type][video_sub_category]["answered"] += 1
                    v_sub_type_dict[video_type][video_sub_category]["correct"] += extration == gt_answer


    # Print the results for each video type
    for video_type in video_types:

        print("=====================================")
        print(f"Evaluation on video Type: {video_type}")
        print("=====================================")
        if return_categories_accuracy:
            print("-------------------------------------")
            print("Video Domains")
            print("-------------------------------------")
            for v_type in v_type_dict[video_type]:
                print(f"{v_type}: {100 * v_type_dict[video_type][v_type]['correct'] / v_type_dict[video_type][v_type]['answered'] if v_type_dict[video_type][v_type]['answered'] > 0 else 0 : .1f}%")
        if return_sub_categories_accuracy:
            print("-------------------------------------")
            print("Video Sub Categories")
            print("-------------------------------------")
            for v_sub_type in v_sub_type_dict[video_type]:
                print(f"{v_sub_type}: {100 * v_sub_type_dict[video_type][v_sub_type]['correct'] / v_sub_type_dict[video_type][v_sub_type]['answered'] if v_sub_type_dict[video_type][v_sub_type]['answered'] > 0 else 0 : .1f}%")
        if return_task_types_accuracy:
            print("-------------------------------------")
            print("Task Categories")
            print("-------------------------------------")
            for q_type in q_type_dict[video_type]:
                print(f"{q_type}: {100 * q_type_dict[video_type][q_type]['correct'] / q_type_dict[video_type][q_type]['answered'] if q_type_dict[video_type][q_type]['answered'] > 0 else 0 : .1f}%")
        
        print("-------------------------------------")
        print("Overall Performance")
        print("-------------------------------------")
        total_correct = sum([q_type_dict[video_type][q_type]["correct"] for q_type in TASK_CATEGORIES])
        total_answered = sum([q_type_dict[video_type][q_type]["answered"] for q_type in TASK_CATEGORIES])
        print(f"Overall: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")

        print("\n")

    # Print the results for the entire dataset
    print("=====================================")
    print("Evaluation on the entire dataset")
    print("=====================================")

    if return_categories_accuracy:
        print("-------------------------------------")
        print("Video Categories")
        print("-------------------------------------")
        for v_type in CATEGORIES:
            total_correct = sum([v_type_dict[video_type][v_type]["correct"] for video_type in video_types])
            total_answered = sum([v_type_dict[video_type][v_type]["answered"] for video_type in video_types])
            print(f"{v_type}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
    

    if return_sub_categories_accuracy:
        print("-------------------------------------")
        print("Video Sub Categories")
        print("-------------------------------------")

        for v_sub_type in SUB_CATEGORIES:
            total_correct = sum([v_sub_type_dict[video_type][v_sub_type]["correct"] for video_type in video_types])
            total_answered = sum([v_sub_type_dict[video_type][v_sub_type]["answered"] for video_type in video_types])
            print(f"{v_sub_type}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")


    if return_task_types_accuracy:
        print("-------------------------------------")
        print("Task Categories")
        print("-------------------------------------")
        for q_type in TASK_CATEGORIES:

            total_correct = sum([q_type_dict[video_type][q_type]["correct"] for video_type in video_types])
            total_answered = sum([q_type_dict[video_type][q_type]["answered"] for video_type in video_types])
            print(f"{q_type}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")

    print("-------------------------------------")
    print("Overall Performance")
    print("-------------------------------------")
    total_correct = sum([sum([q_type_dict[video_type][q_type]["correct"] for q_type in TASK_CATEGORIES]) for video_type in video_types])
    total_answered = sum([sum([q_type_dict[video_type][q_type]["answered"] for q_type in TASK_CATEGORIES]) for video_type in video_types])
    print(f"Overall: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--results_file", type=str, required=True)
    parser.add_argument("--video_duration_type", type=str, required=True)
    parser.add_argument("--return_categories_accuracy", action="store_true")
    parser.add_argument("--return_sub_categories_accuracy", action="store_true")
    parser.add_argument("--return_task_types_accuracy", action="store_true")
    parser.add_argument("--skip_missing", action="store_true")

    args = parser.parse_args()

    eval_your_results(
        args.results_file, 
        video_types=args.video_duration_type,
        skip_missing=args.skip_missing,
        return_categories_accuracy=args.return_categories_accuracy,
        return_sub_categories_accuracy=args.return_sub_categories_accuracy,
        return_task_types_accuracy=args.return_task_types_accuracy,
    )