File size: 8,196 Bytes
87ce8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import os
import re
import math
import json
import argparse
import warnings
import traceback
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
from decord import VideoReader, cpu
from torch.utils.data import Dataset, DataLoader
import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
class MVBenchDataset(Dataset):
def __init__(self, data_list, processor):
self.data_list = data_list
self.processor = processor
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
bound = (None, None)
if self.data_list[idx]['bound']:
bound = (self.data_list[idx]['data']['start'], self.data_list[idx]['data']['end'])
video_path = os.path.join(self.data_list[idx]['prefix'], self.data_list[idx]['data']['video'])
torch_imgs = self.processor(video_path, s=bound[0], e=bound[1])
question = self.data_list[idx]['data']['question']
options = self.data_list[idx]['data']['candidates']
answer = self.data_list[idx]['data']['answer']
task_type = self.data_list[idx]['task_type']
answer_idx = -1
letters = []
options_string = ''
for option_idx, c in enumerate(options):
letters.append(f"{chr(ord('A') + option_idx)}")
options_string += f"({chr(ord('A') + option_idx)}) {c}\n"
if c == answer:
answer_idx = option_idx
instruct = f'Question: {question}\nOptions:\n{options_string}Answer with the option\'s letter from the given choices directly and only give the best option.'
return {
'video': torch_imgs,
'video_path': video_path,
'instruct': instruct,
'letters': letters,
'options': options,
'answer_idx': answer_idx,
'task_type': task_type
}
tasks = {
"Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), # has start & end
"Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), # has start & end
"Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False),
"Fine-grained Action": ("fine_grained_action.json", "Moments_in_Time_Raw/videos/", "video", False),
"Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False),
"Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False),
"Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), # has start & end
"Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False),
"Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False),
"Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), # has start & end
"Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False),
"Action Count": ("action_count.json", "perception/videos/", "video", False),
"Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False),
"Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False),
"State Change": ("state_change.json", "perception/videos/", "video", False),
"Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False),
"Character Order": ("character_order.json", "perception/videos/", "video", False),
"Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False),
"Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), # has start & end, read frame
"Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False),
}
def build_mvbench_eval(args, processor):
data_list = []
for task_name, task in tasks.items():
json_file = os.path.join(args.question_file, task[0])
vis_folder = os.path.join(args.video_folder, task[1])
with open(json_file, 'r') as f:
json_data = json.load(f)
for data in json_data:
data_list.append({
'task_type': task_name,
'prefix': vis_folder,
'data_type': task[2],
'bound': task[3],
'data': data
})
data_list = get_chunk(data_list, args.num_chunks, args.chunk_idx)
dataset = MVBenchDataset(data_list, processor)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
return dataloader
def mvbench_dump(vid, instruct, letters, options, output):
output = output.replace('answer', '')
output = output.replace('Answer', '')
pred_answer = re.findall(f'[\(,\ ]*[{letters[0]}-{letters[-1]}][\),\ ]*', output)
try:
find_flag = False
if len(pred_answer) == 0:
for idx, opt in enumerate(options):
# Arabic numerals -> English words
if opt.lower() in output.lower():
pred_idx = idx
find_flag = True
break
else:
pred_answer = pred_answer[0].strip()
pred_answer = pred_answer.strip('()')
pred_idx = letters.index(pred_answer)
find_flag = True
assert find_flag, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(vid, instruct, output)
except:
traceback.print_exc()
pred_idx = 2
return pred_idx
def run_inference(args):
disable_torch_init()
model, processor, tokenizer = model_init(args.model_path)
answer_file = os.path.expanduser(args.answer_file)
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
ans_file = open(answer_file, "w")
val_loader = build_mvbench_eval(args, processor['video'])
# NOTE: only support batch size 1 for now
for i, line in enumerate(tqdm(val_loader)):
vid = line['video_path'][0]
video_tensor = line['video'][0]
task_type = line['task_type'][0]
instruct = line['instruct'][0]
letters = list(zip(*line['letters']))[0]
options = list(zip(*line['options']))[0]
answer_idx = line['answer_idx'][0].item()
output = mm_infer(
video_tensor,
instruct,
model=model,
tokenizer=tokenizer,
modal='video',
do_sample=False,
)
pred_idx = mvbench_dump(vid, instruct, letters, options, output)
ans_file.write(json.dumps({"vid": vid, "task_type": task_type, "pred": pred_idx, "gt": answer_idx}) + '\n')
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', help='', required=True)
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--device", type=str, required=False, default='cuda:0')
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--num-workers", type=int, default=8)
args = parser.parse_args()
run_inference(args)
|