File size: 11,582 Bytes
87ce8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
import shutil
import logging
import torch
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
from .projector import load_mm_projector
from .videollama2_llama import Videollama2LlamaForCausalLM, Videollama2LlamaConfig
from .videollama2_mistral import Videollama2MistralForCausalLM, Videollama2MistralConfig
from .videollama2_mixtral import Videollama2MixtralForCausalLM, Videollama2MixtralConfig
from .videollama2_qwen2 import Videollama2Qwen2ForCausalLM, Videollama2Qwen2Config
from .videollama2_gemma2 import Videollama2Gemma2ForCausalLM, Videollama2Gemma2Config
from .videollama2_phi3 import Videollama2Phi3ForCausalLM, Videollama2Phi3Config
VLLMs = {
"videollama2": Videollama2MistralForCausalLM,
"videollama2_llama": Videollama2LlamaForCausalLM,
"videollama2_mistral": Videollama2MistralForCausalLM,
"videollama2_mixtral": Videollama2MixtralForCausalLM,
"videollama2_qwen2": Videollama2Qwen2ForCausalLM,
"videollama2_gemma2": Videollama2Gemma2ForCausalLM,
"videollama2_phi3": Videollama2Phi3ForCausalLM,
}
VLLMConfigs = {
"videollama2": Videollama2MistralConfig,
"videollama2_llama": Videollama2LlamaConfig,
"videollama2_mistral": Videollama2MistralConfig,
"videollama2_mixtral": Videollama2MixtralConfig,
"videollama2_qwen2": Videollama2Qwen2Config,
"videollama2_gemma2": Videollama2Gemma2Config,
"videollama2_phi3": Videollama2Phi3Config,
}
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
logging.info(f"Loading model from path: {model_path}")
logging.info(f"Model base: {model_base}, Model name: {model_name}")
logging.info(f"Device: {device}, Device map: {device_map}")
if 'token' in kwargs:
token = kwargs['token']
else:
token = None
kwargs = {"device_map": device_map, **kwargs}
if device != "cuda":
kwargs['device_map'] = {"": device}
if load_8bit:
kwargs['load_in_8bit'] = True
elif load_4bit:
# NOTE: High-version Transformers will report: """ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time."""
# kwargs['load_in_4bit'] = True
kwargs['quantization_config'] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
else:
kwargs['torch_dtype'] = torch.float16
if use_flash_attn:
kwargs['attn_implementation'] = 'flash_attention_2'
try:
config = AutoConfig.from_pretrained(model_path)
logging.info(f"Model configuration loaded successfully.")
except Exception as e:
logging.error(f"Error loading model configuration: {e}")
raise e
# judge model type
model_type = config.model_type
# judge pretrain/finetune
try:
is_pretraining = config.tune_mm_mlp_adapter
except:
is_pretraining = False
# NOTE: lora/qlora model loading
if 'lora' in model_name.lower() or 'qlora' in model_name.lower():
logging.info(f"inside lora if")
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
# NOTE: remove qlora training quantization config
if hasattr(lora_cfg_pretrained, 'quantization_config'):
del lora_cfg_pretrained.quantization_config
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
print('Loading VideoLLaMA from base model...')
if 'vicuna' in model_base.lower():
model = Videollama2LlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
elif 'mistral' in model_base.lower():
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional VideoLLaMA weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
elif model_base is not None or '-base' in model_name.lower() or is_pretraining:
# NOTE: Base/Pretrain model loading
logging.info(f"inside else if base model")
print('Loading VideoLLaMA 2 from base model...')
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
if model_type in ['videollama2', 'videollama2_mistral']:
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
elif model_type in ['videollama2_mixtral']:
model = Videollama2MixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
elif model_type in ['videollama2_qwen2']:
model = Videollama2Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
elif model_type in ['videollama2_gemma2']:
model = Videollama2Gemma2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
elif model_type in ['videollama2_phi3']:
model = Videollama2Phi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
# NOTE; loading vision-language projector
# * old codes for loading local mm_projector.bin
# mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
# mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
# model.load_state_dict(mm_projector_weights, strict=False)
# * new codes which supports loading mm_projector.bin both offline and online
mm_projector_weights = load_mm_projector(model_path, token=token)
model.load_state_dict(mm_projector_weights, strict=False)
elif 'videollama2' in model_type:
# NOTE: SFT model loading
logging.info(f"inside AutoTokenizer else if")
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
if model_type in ['videollama2', 'videollama2_mistral']:
model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
elif model_type in ['videollama2_mixtral']:
logging.info(f"Loading videollama2_mixtral")
logging.info(f"Config: {config}")
model = Videollama2MixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
elif model_type in ['videollama2_qwen2']:
model = Videollama2Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
elif model_type in ['videollama2_gemma2']:
model = Videollama2Gemma2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
elif model_type in ['videollama2_phi3']:
model = Videollama2Phi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
else:
logging.info(f"inside else")
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token)
model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs)
processor = None
if "videollama" in model_type:
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
vision_tower.to(device=device, dtype=torch.float16)
# NOTE: videollama2 adopts the same processor for processing image and video.
processor = vision_tower.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
logging.info(f"Model: {model}")
logging.info(f"context_len: {context_len}")
return tokenizer, model, processor, context_len
|