File size: 6,251 Bytes
87ce8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoModelForCausalLM, \
Gemma2Config, Gemma2Model, Gemma2ForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from .videollama2_arch import Videollama2MetaModel, Videollama2MetaForCausalLM
class Videollama2Gemma2Config(Gemma2Config):
model_type = "videollama2_gemma2"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.model_type = "videollama2_gemma2"
class Videollama2Gemma2Model(Videollama2MetaModel, Gemma2Model):
config_class = Videollama2Gemma2Config
def __init__(self, config: Gemma2Config):
super(Videollama2Gemma2Model, self).__init__(config)
class Videollama2Gemma2ForCausalLM(Gemma2ForCausalLM, Videollama2MetaForCausalLM):
config_class = Videollama2Gemma2Config
def __init__(self, config, **kwargs):
super(Gemma2ForCausalLM, self).__init__(config)
self.model = Videollama2Gemma2Model(config)
# self.pretraining_tp = config.pretraining_tp
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[int] = None,
**kwargs
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
attention_mask,
past_key_values,
labels,
images
)
outputs = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
outputs.labels = labels
return outputs
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(
input_ids,
attention_mask,
past_key_values,
inputs_embeds,
_
) = self.prepare_inputs_labels_for_multimodal(
input_ids=inputs,
attention_mask=attention_mask,
past_key_values=None,
labels=None,
images=images
)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs
)
def _prepare_generated_length(self, model_input_name, inputs_tensor, **kwargs):
if model_input_name == "inputs_embeds":
self.inputs_embeds_length = inputs_tensor.size(1)
else:
self.inputs_embeds_length = 0
return super()._prepare_generated_length(
model_input_name=model_input_name,
inputs_tensor=inputs_tensor,
**kwargs)
def _get_cache(self, cache_implementation: str, max_batch_size: int, max_cache_len: int, **kwargs):
return super()._get_cache(
cache_implementation=cache_implementation,
max_batch_size=max_batch_size,
max_cache_len=max_cache_len + self.inputs_embeds_length,
**kwargs)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
_inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
_inputs['images'] = images
return _inputs
AutoConfig.register("videollama2_gemma2", Videollama2Gemma2Config)
AutoModelForCausalLM.register(Videollama2Gemma2Config, Videollama2Gemma2ForCausalLM)
|