File size: 24,261 Bytes
87ce8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
#    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import re
import os
import copy
import json
import random
import pathlib
import traceback
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence, List

# torch-related packages
# NOTE: torch must be imported before transformers. Otherwise, `Segmentation fault (core dumped)` will occur.
import torch
from torch.utils.data import Dataset

import transformers
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock

import sys
sys.path.append('./')
from videollama2.model import *
from videollama2.constants import NUM_FRAMES, IGNORE_INDEX, MODAL_INDEX_MAP
from videollama2.mm_utils import tokenizer_multimodal_token, process_video, process_image
from videollama2.videollama2_trainer import (VideoLLaMA2Trainer,
    get_peft_state_maybe_zero_3, get_peft_state_non_lora_maybe_zero_3, 
    find_all_linear_names, safe_save_model_for_hf_trainer
)

# NOTE: fast tokenizer warning issue: https://github.com/huggingface/transformers/issues/5486   
os.environ["TOKENIZERS_PARALLELISM"] = "true"

local_rank = None


def rank0_print(*args):
    if local_rank == 0:
        print(*args)


def set_seed(seed=42):
    """
    Set the random seed for reproducible results.

    :param seed: An integer value to be used as the random seed.
    """
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  # for multi-GPU setups
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


@dataclass
class ModelArguments:
    # LLM Arguments
    model_type: Optional[str] = field(default="videollama2", metadata={"help": "Model type selected in the list: " + ", ".join(VLLMs.keys())})
    model_path: Optional[str] = field(default="lmsys/vicuna-7b-v1.5")
    version: Optional[str] = field(default="v1", metadata={"help": "Version of the conversation template."})
    freeze_backbone: bool = field(default=False, metadata={"help": "Whether to freeze the LLM backbone."})
    # Connector Arguments
    mm_projector_type: Optional[str] = field(default='linear')
    tune_mm_mlp_adapter: bool = field(default=False)
    pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
    # Vision tower Arguments
    vision_tower: Optional[str] = field(default=None)
    mm_vision_select_layer: Optional[int] = field(default=-1)
    mm_vision_select_feature: Optional[str] = field(default="patch")


@dataclass
class DataArguments:
    # Path Arguments
    data_path: str = field(default=None, metadata={"help": "Path to the training data."})
    # image_folder: Optional[str] = field(default=None)
    # video_folder: Optional[str] = field(default=None)
    data_folder: Optional[str] = field(default=None)
    # Loading Arguments
    is_multimodal: bool = False
    lazy_preprocess: bool = False
    num_frames: Optional[int] = field(default=None)
    # Preprocess Arguments
    image_aspect_ratio: str = 'square'


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    optim: str = field(default="adamw_torch")
    mm_projector_lr: Optional[float] = None
    freeze_mm_mlp_adapter: bool = field(default=False)
    remove_unused_columns: bool = field(default=False)
    cache_dir: Optional[str] = field(default=None)
    # Training Data Arguments 
    group_by_modality_length: bool = field(default=False)
    model_max_length: int = field(
        default=512,
        metadata={
            "help":
            "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    # Lora or Quant Arguments
    double_quant: bool = field(
        default=True,
        metadata={"help": "Compress the quantization statistics through double quantization."}
    )
    quant_type: str = field(
        default="nf4",
        metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
    )
    bits: int = field(
        default=16,
        metadata={"help": "How many bits to use."}
    )
    lora_enable: bool = False
    lora_r: int = 64
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_weight_path: str = ""
    lora_bias: str = "none"


def preprocess_plain(
    sources: Sequence[str],
    tokenizer: transformers.PreTrainedTokenizer,
    modal_token: str = None,
) -> Dict:
    roles = {"human": "user", "gpt": "assistant"}
    conversations = []
    input_ids = []
    targets = []
    for source in sources:
        # 1. apply chat template for input conversation
        assert len(source) == 2
        assert modal_token in source[0]['value']
        message = [
            {'role': 'user', 'content': modal_token},
            {'role': 'assistant', 'content': source[1]['value']}
        ]
        conversation = tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=False)
        # 2. tokenize conversations
        input_ids.append(tokenizer_multimodal_token(conversation, tokenizer, modal_token, return_tensors='pt'))
        # 3. make targets
        targets.append(copy.deepcopy(input_ids[-1]))
        instruction = tokenizer.apply_chat_template(message[:1], tokenize=False, add_generation_prompt=True)
        instruction_len = len(tokenizer_multimodal_token(instruction, tokenizer, modal_token, return_tensors='pt'))
        targets[-1][:instruction_len] = IGNORE_INDEX

        # print("instruction: ----------------")
        # print(instruction)
        # print("conversation: ----------------")
        # print(conversation)
        # print("training targets: ----------------")
        # print(tokenizer.decode(targets[-1][instruction_len:]))
        # print(input_ids[-1])
        # print(targets[-1])

    return dict(input_ids=input_ids, labels=targets)


def preprocess(
    sources: Sequence[str],
    tokenizer: transformers.PreTrainedTokenizer,
    modal_token: str = None,
) -> Dict:
    roles = {"human": "user", "gpt": "assistant"}

    # Apply prompt templates
    conversations = []
    input_ids = []
    targets = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != "user":
            # Skip the first one if it is not from human
            source = source[1:]

        message = [{'role': roles[sentence['from']], 'content': sentence['value']} for sentence in source]
        conversation = tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=False)
        input_ids.append(tokenizer_multimodal_token(conversation, tokenizer, modal_token, return_tensors='pt'))
        targets.append(copy.deepcopy(input_ids[-1]))

        assert len(source) % 2 == 0, f"Invalid conversation length {len(source)}."

        cur = 0
        message = []
        for idx, sentence in enumerate(source):
            if idx % 2 == 1:
                tmp_message = [
                    {'role': roles[source[idx-1]['from']], 'content': source[idx-1]['value']}, 
                    {'role': roles[sentence['from']], 'content': sentence['value']}
                ]

                instruction = tokenizer.apply_chat_template(message + tmp_message[:1], tokenize=False, add_generation_prompt=True)
                conversation = tokenizer.apply_chat_template(message + tmp_message, tokenize=False, add_generation_prompt=False)

                instruction_len = len(tokenizer_multimodal_token(instruction, tokenizer, modal_token, return_tensors='pt'))
                conversation_len = len(tokenizer_multimodal_token(conversation, tokenizer, modal_token, return_tensors='pt'))

                targets[-1][cur:instruction_len] = IGNORE_INDEX

                cur = conversation_len
                message += tmp_message

    return dict(input_ids=input_ids, labels=targets)


def preprocess_multimodal(
    sources: Sequence[str],
    data_args: DataArguments,
    modal_token: str = None,
) -> Dict:
    is_multimodal = data_args.is_multimodal
    if not is_multimodal:
        return sources

    assert modal_token in MODAL_INDEX_MAP, f"Unsupported modal token {modal_token}."

    for source in sources:
        for sentence in source:
            if modal_token in sentence['value']:
                sentence['value'] = sentence['value'].replace(modal_token, '').strip()
                sentence['value'] = modal_token + '\n' + sentence['value']
                sentence['value'] = sentence['value'].strip()
            replace_token = modal_token
            # TODO: fix this for multimedia, e.g., <video>, <audio>, etc.
            sentence["value"] = sentence["value"].replace(modal_token, replace_token)

    return sources


class LazySupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(self, data_path: str,
                 tokenizer: transformers.PreTrainedTokenizer,
                 data_args: DataArguments):
        super(LazySupervisedDataset, self).__init__()
        list_data_dict = json.load(open(data_path, "r"))

        rank0_print("Formatting inputs...Skip in lazy mode")
        self.tokenizer = tokenizer
        self.list_data_dict = list_data_dict
        self.data_args = data_args

    def __len__(self):
        return len(self.list_data_dict)

    @property
    def lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            img_tokens = 576 if 'image' in sample else 0
            length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
        return length_list

    @property
    def modality_lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
            cur_len = cur_len if 'image' in sample else -cur_len
            length_list.append(cur_len)
        return length_list

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        sources = self.list_data_dict[i]
        if isinstance(i, int):
            sources = [sources]
        assert len(sources) == 1, "Don't know why it is wrapped to a list"  # FIXME

        image_processor = self.data_args.image_processor
        video_processor = self.data_args.video_processor

        num_frames = NUM_FRAMES if self.data_args.num_frames is None else self.data_args.num_frames

        if 'image' in sources[0]:
            image_file = self.list_data_dict[i]['image']
            image_folder = self.data_args.data_folder
            image_file = os.path.join(image_folder, image_file)

            try:
                image = process_image(image_file, image_processor, aspect_ratio=self.data_args.image_aspect_ratio)
            except:
                traceback.print_exc()
                backup_idx = random.randint(0, len(self.list_data_dict) - 1)
                print(f"Encounted error when reading image {image_file}, use {backup_idx}-th example instead!!!")
                return self.__getitem__(backup_idx)

            # place <image> tag to question head.
            modal_token = "<image>"
            sources = preprocess_multimodal(copy.deepcopy([e["conversations"] for e in sources]), self.data_args, modal_token)
        elif 'video' in sources[0]:
            video_file = self.list_data_dict[i]['video']
            video_folder = self.data_args.data_folder
            video_file = os.path.join(video_folder, video_file)

            try:
                video = process_video(video_file, video_processor, aspect_ratio=self.data_args.image_aspect_ratio, num_frames=num_frames)
            except Exception as e:
                traceback.print_exc()
                backup_idx = random.randint(0, len(self.list_data_dict) - 1)
                print(f"Encounted error when reading video {video_file}, use {backup_idx}-th example instead!!!")
                return self.__getitem__(backup_idx)

            # place <video> tag to question head.
            modal_token = "<video>"
            sources = preprocess_multimodal(copy.deepcopy([e["conversations"] for e in sources]), self.data_args, modal_token)
        else:
            modal_token = None
            sources = copy.deepcopy([e["conversations"] for e in sources])

        if self.data_args.is_pretraining:
            data_dict = preprocess_plain(sources, self.tokenizer, modal_token=modal_token)
        else:
            data_dict = preprocess(sources, self.tokenizer, modal_token=modal_token)

        if isinstance(i, int):
            data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0])

        # image exist in the data
        if 'image' in self.list_data_dict[i]:
            data_dict['image'] = image
        elif 'video' in self.list_data_dict[i]:
            data_dict['video'] = video
        elif self.data_args.is_multimodal:
            # image does not exist in the data, but the model is multimodal
            data_dict['image'] = torch.zeros(3, self.data_args.image_size, self.data_args.image_size)
        return data_dict


@dataclass
class DataCollatorForSupervisedDataset(object):
    """Collate examples for supervised fine-tuning."""

    tokenizer: transformers.PreTrainedTokenizer

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        input_ids, labels = tuple([instance[key] for instance in instances]
                                  for key in ("input_ids", "labels"))
        input_ids = torch.nn.utils.rnn.pad_sequence(
            input_ids,
            batch_first=True,
            padding_value=self.tokenizer.pad_token_id)
        labels = torch.nn.utils.rnn.pad_sequence(labels,
                                                 batch_first=True,
                                                 padding_value=IGNORE_INDEX)
        input_ids = input_ids[:, :self.tokenizer.model_max_length]
        labels = labels[:, :self.tokenizer.model_max_length]
        batch = dict(
            input_ids=input_ids,
            labels=labels,
            attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
        )

        # work for 'images' argument in `prepare_inputs_labels_for_multimodal` of LlavaMetaForCausalLM in llava_arch.py
        batch['images'] = []
        for instance in instances:
            for modal_token in MODAL_INDEX_MAP.keys():
                modal_token = modal_token.lower()
                # MODAL_TOKEN shape like: <image>, <video>, ...
                modal_name = re.findall(f'[<](.*)[>]', modal_token)
                assert len(modal_name) == 1
                modal_name = modal_name[0]
                if modal_name in instance:
                    batch['images'].append((instance[modal_name], modal_name))

        return batch


def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
                                data_args) -> Dict:
    """Make dataset and collator for supervised fine-tuning."""
    train_dataset = LazySupervisedDataset(
        tokenizer=tokenizer,
        data_path=data_args.data_path,
        data_args=data_args
    )
    data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
    return dict(train_dataset=train_dataset,
                eval_dataset=None,
                data_collator=data_collator)


def train(attn_implementation=None):
    global local_rank
    set_seed(42)

    parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    local_rank = training_args.local_rank
    compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))

    bnb_model_from_pretrained_args = {}
    if training_args.bits in [4, 8]:
        from transformers import BitsAndBytesConfig
        bnb_model_from_pretrained_args.update(dict(
            # device_map={"": training_args.device},
            # BUG: High version transformers report error: 
            # ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time
            # load_in_4bit=training_args.bits == 4,
            # load_in_8bit=training_args.bits == 8,
            quantization_config=BitsAndBytesConfig(
                load_in_4bit=training_args.bits == 4,
                load_in_8bit=training_args.bits == 8,
                llm_int8_skip_modules=["mm_projector"],
                llm_int8_threshold=6.0,
                llm_int8_has_fp16_weight=False,
                bnb_4bit_compute_dtype=compute_dtype,
                bnb_4bit_use_double_quant=training_args.double_quant,
                bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
                bnb_4bit_quant_storage=compute_dtype,
            )
        ))

    config = VLLMConfigs[model_args.model_type].from_pretrained(model_args.model_path, trust_remote_code=True)
    if 'gemma2' in model_args.model_type:
        config._attn_implementation = 'eager'
    else:
        config._attn_implementation = attn_implementation

    if model_args.vision_tower is not None:
        model = VLLMs[model_args.model_type].from_pretrained(
            model_args.model_path,
            config=config,
            cache_dir=training_args.cache_dir,
            torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
            do_sample=True,
            **bnb_model_from_pretrained_args
        )
        if 'mixtral' in model_args.model_type:
            import deepspeed
            deepspeed.utils.set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
    else:
        model = transformers.LlamaForCausalLM.from_pretrained(
            model_args.model_path,
            config=config,
            cache_dir=training_args.cache_dir,
            torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
            do_sample=True,
            **bnb_model_from_pretrained_args
        )
    model.config.use_cache = False

    if model_args.freeze_backbone:
        model.model.requires_grad_(False)

    if training_args.bits in [4, 8]:
        from peft import prepare_model_for_kbit_training
        model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
        model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)

    if training_args.gradient_checkpointing:
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:
            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)
            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

    if training_args.lora_enable:
        from peft import LoraConfig, get_peft_model
        lora_config = LoraConfig(
            r=training_args.lora_r,
            lora_alpha=training_args.lora_alpha,
            target_modules=find_all_linear_names(model),
            lora_dropout=training_args.lora_dropout,
            bias=training_args.lora_bias,
            task_type="CAUSAL_LM",
        )
        if training_args.bits == 16:
            if training_args.bf16:
                model.to(torch.bfloat16)
            if training_args.fp16:
                model.to(torch.float16)
        rank0_print("Adding LoRA adapters...")
        model = get_peft_model(model, lora_config)


    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=True,
    )

    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.unk_token

    if model_args.vision_tower is not None:
        # initialize vision encoder + multi-modal projector
        model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp)

        vision_tower = model.get_vision_tower()
        vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)

        data_args.image_size = vision_tower.image_size

        data_args.image_processor = vision_tower.image_processor
        data_args.video_processor = vision_tower.video_processor if hasattr(vision_tower, "video_processor") else vision_tower.image_processor

        data_args.is_multimodal = True

        model.config.image_aspect_ratio = data_args.image_aspect_ratio
        model.config.tokenizer_padding_side = tokenizer.padding_side
        model.config.tokenizer_model_max_length = tokenizer.model_max_length

        model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
        if model_args.tune_mm_mlp_adapter:
            model.requires_grad_(False)
            for p in model.get_model().mm_projector.parameters():
                p.requires_grad = True

        if model_args.tune_mm_mlp_adapter:
            data_args.is_pretraining = True
        else:
            data_args.is_pretraining = False

        model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
        if training_args.freeze_mm_mlp_adapter:
            for p in model.get_model().mm_projector.parameters():
                p.requires_grad = False

        if training_args.bits in [4, 8]:
            model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)

        model.config.mm_projector_lr = training_args.mm_projector_lr
        model.config.num_frames = NUM_FRAMES if data_args.num_frames is None else data_args.num_frames

    if training_args.bits in [4, 8]:
        from peft.tuners.lora import LoraLayer
        for name, module in model.named_modules():
            if isinstance(module, LoraLayer):
                if training_args.bf16:
                    module = module.to(torch.bfloat16)
            if 'norm' in name:
                module = module.to(torch.float32)
            if 'lm_head' in name or 'embed_tokens' in name:
                if hasattr(module, 'weight'):
                    if training_args.bf16 and module.weight.dtype == torch.float32:
                        module = module.to(torch.bfloat16)

    print("Current model:", model)
    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
    # select a Trainer
    trainer = VideoLLaMA2Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    model.config.use_cache = True

    if training_args.lora_enable:
        state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
        non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
        if training_args.local_rank == 0 or training_args.local_rank == -1:
            model.config.save_pretrained(training_args.output_dir)
            model.save_pretrained(training_args.output_dir, state_dict=state_dict)
            torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
    else:
        safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)


if __name__ == "__main__":
    train()