|
import os |
|
import argparse |
|
import json |
|
import ast |
|
import traceback |
|
from tqdm import tqdm |
|
from multiprocessing.pool import Pool |
|
|
|
from openai import AzureOpenAI |
|
|
|
|
|
def init(): |
|
client = AzureOpenAI( |
|
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), |
|
api_key=os.getenv("AZURE_OPENAI_KEY"), |
|
api_version="2024-02-15-preview" |
|
) |
|
|
|
return client |
|
|
|
|
|
def interaction(client, message_text): |
|
completion = client.chat.completions.create( |
|
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"), |
|
messages = message_text, |
|
temperature=0.7, |
|
max_tokens=800, |
|
top_p=0.95, |
|
frequency_penalty=0, |
|
presence_penalty=0, |
|
stop=None |
|
) |
|
|
|
return completion |
|
|
|
|
|
def annotate(prediction_set, caption_files, output_dir, args): |
|
|
|
for file in tqdm(caption_files): |
|
key = file[:-5] |
|
qa_set = prediction_set[key] |
|
question = qa_set['q'] |
|
answer = qa_set['a'] |
|
pred = qa_set['p'] |
|
try: |
|
message = [ |
|
{ |
|
"role": "system", |
|
"content": |
|
"You are an intelligent chatbot designed for evaluating the temporal understanding of generative outputs for video-based question-answer pairs. " |
|
"Your task is to compare the predicted answer with the correct answer and determine if they correctly reflect the temporal sequence of events in the video content. Here's how you can accomplish the task:" |
|
"------" |
|
"##INSTRUCTIONS: " |
|
"- Focus on the temporal consistency between the predicted answer and the correct answer. The predicted answer should correctly reflect the sequence of events or details as they are presented in the video content.\n" |
|
"- Consider synonyms or paraphrases as valid matches, but only if the temporal order is maintained.\n" |
|
"- Evaluate the temporal accuracy of the prediction compared to the answer." |
|
}, |
|
{ |
|
"role": "user", |
|
"content": |
|
"Please evaluate the following video-based question-answer pair:\n\n" |
|
f"Question: {question}\n" |
|
f"Correct Answer: {answer}\n" |
|
f"Predicted Answer: {pred}\n\n" |
|
"Provide your evaluation only as a temporal accuracy score where the temporal accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of temporal consistency. " |
|
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the temporal accuracy score in INTEGER, not STRING." |
|
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. " |
|
"For example, your response should look like this: {''score': 4.8}." |
|
} |
|
] |
|
|
|
completion = interaction(client, message) |
|
|
|
response_message = completion.choices[0].message.content |
|
response_dict = ast.literal_eval(response_message) |
|
result_qa_pair = [response_dict, qa_set] |
|
|
|
|
|
with open(f"{output_dir}/{key}.json", "w") as f: |
|
json.dump(result_qa_pair, f) |
|
|
|
except Exception as e: |
|
print(f"Error processing file '{key}': {e}") |
|
|
|
|
|
def main(args): |
|
pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()] |
|
|
|
|
|
video_id_counts = {} |
|
new_pred_contents = [] |
|
|
|
|
|
for sample in pred_contents: |
|
video_id = sample['video_name'] |
|
if video_id in video_id_counts: |
|
video_id_counts[video_id] += 1 |
|
else: |
|
video_id_counts[video_id] = 0 |
|
|
|
|
|
new_sample = sample |
|
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}" |
|
new_pred_contents.append(new_sample) |
|
|
|
|
|
id_list = [x['video_name'] for x in new_pred_contents] |
|
caption_files = [f"{id}.json" for id in id_list] |
|
|
|
output_dir = args.output_dir |
|
|
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
|
|
prediction_set = {} |
|
for sample in new_pred_contents: |
|
id = sample['video_name'] |
|
question = sample['Q'] |
|
answer = sample['A'] |
|
pred = sample['P'] |
|
qa_set = {"q": question, "a": answer, "p": pred} |
|
prediction_set[id] = qa_set |
|
|
|
|
|
|
|
num_tasks = args.num_tasks |
|
|
|
|
|
while True: |
|
try: |
|
|
|
completed_files = os.listdir(output_dir) |
|
print(f"completed_files: {len(completed_files)}") |
|
|
|
|
|
incomplete_files = [f for f in caption_files if f not in completed_files] |
|
print(f"incomplete_files: {len(incomplete_files)}") |
|
|
|
|
|
if len(incomplete_files) == 0: |
|
break |
|
if len(incomplete_files) <= num_tasks: |
|
num_tasks = 1 |
|
|
|
|
|
part_len = len(incomplete_files) // num_tasks |
|
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)] |
|
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts] |
|
|
|
|
|
with Pool() as pool: |
|
pool.starmap(annotate, task_args) |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
|
|
combined_contents = {} |
|
json_path = args.output_json |
|
|
|
|
|
for file_name in os.listdir(output_dir): |
|
if file_name.endswith(".json"): |
|
file_path = os.path.join(output_dir, file_name) |
|
with open(file_path, "r") as json_file: |
|
content = json.load(json_file) |
|
combined_contents[file_name[:-5]] = content |
|
|
|
|
|
with open(json_path, "w") as json_file: |
|
json.dump(combined_contents, json_file) |
|
print("All evaluation completed!") |
|
|
|
|
|
score_sum = 0 |
|
count = 0 |
|
for key, result in combined_contents.items(): |
|
count += 1 |
|
score_match = result[0]['score'] |
|
score = int(score_match) |
|
score_sum += score |
|
average_score = score_sum / count |
|
|
|
print("Average score temporal understanding:", average_score) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3") |
|
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.") |
|
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.") |
|
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.") |
|
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.") |
|
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.") |
|
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.") |
|
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.") |
|
args = parser.parse_args() |
|
|
|
|
|
os.environ["AZURE_OPENAI_KEY"] = args.api_key |
|
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint |
|
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname |
|
|
|
client = init() |
|
|
|
main(args) |
|
|