|
import os |
|
import re |
|
import math |
|
import json |
|
import argparse |
|
import warnings |
|
import traceback |
|
|
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
from decord import VideoReader, cpu |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
import sys |
|
sys.path.append('./') |
|
from videollama2 import model_init, mm_infer |
|
from videollama2.utils import disable_torch_init |
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
class MVBenchDataset(Dataset): |
|
|
|
def __init__(self, data_list, processor): |
|
self.data_list = data_list |
|
self.processor = processor |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def __getitem__(self, idx): |
|
bound = (None, None) |
|
if self.data_list[idx]['bound']: |
|
bound = (self.data_list[idx]['data']['start'], self.data_list[idx]['data']['end']) |
|
video_path = os.path.join(self.data_list[idx]['prefix'], self.data_list[idx]['data']['video']) |
|
torch_imgs = self.processor(video_path, s=bound[0], e=bound[1]) |
|
question = self.data_list[idx]['data']['question'] |
|
options = self.data_list[idx]['data']['candidates'] |
|
answer = self.data_list[idx]['data']['answer'] |
|
task_type = self.data_list[idx]['task_type'] |
|
|
|
answer_idx = -1 |
|
letters = [] |
|
options_string = '' |
|
for option_idx, c in enumerate(options): |
|
letters.append(f"{chr(ord('A') + option_idx)}") |
|
options_string += f"({chr(ord('A') + option_idx)}) {c}\n" |
|
if c == answer: |
|
answer_idx = option_idx |
|
|
|
instruct = f'Question: {question}\nOptions:\n{options_string}Answer with the option\'s letter from the given choices directly and only give the best option.' |
|
|
|
return { |
|
'video': torch_imgs, |
|
'video_path': video_path, |
|
'instruct': instruct, |
|
'letters': letters, |
|
'options': options, |
|
'answer_idx': answer_idx, |
|
'task_type': task_type |
|
} |
|
|
|
|
|
tasks = { |
|
"Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), |
|
"Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), |
|
"Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False), |
|
"Fine-grained Action": ("fine_grained_action.json", "Moments_in_Time_Raw/videos/", "video", False), |
|
"Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False), |
|
"Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False), |
|
"Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), |
|
"Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False), |
|
"Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False), |
|
"Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), |
|
"Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False), |
|
"Action Count": ("action_count.json", "perception/videos/", "video", False), |
|
"Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False), |
|
"Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False), |
|
"State Change": ("state_change.json", "perception/videos/", "video", False), |
|
"Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False), |
|
"Character Order": ("character_order.json", "perception/videos/", "video", False), |
|
"Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False), |
|
"Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), |
|
"Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False), |
|
} |
|
|
|
|
|
def build_mvbench_eval(args, processor): |
|
data_list = [] |
|
for task_name, task in tasks.items(): |
|
json_file = os.path.join(args.question_file, task[0]) |
|
vis_folder = os.path.join(args.video_folder, task[1]) |
|
with open(json_file, 'r') as f: |
|
json_data = json.load(f) |
|
for data in json_data: |
|
data_list.append({ |
|
'task_type': task_name, |
|
'prefix': vis_folder, |
|
'data_type': task[2], |
|
'bound': task[3], |
|
'data': data |
|
}) |
|
data_list = get_chunk(data_list, args.num_chunks, args.chunk_idx) |
|
dataset = MVBenchDataset(data_list, processor) |
|
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) |
|
|
|
return dataloader |
|
|
|
|
|
def mvbench_dump(vid, instruct, letters, options, output): |
|
|
|
output = output.replace('answer', '') |
|
output = output.replace('Answer', '') |
|
pred_answer = re.findall(f'[\(,\ ]*[{letters[0]}-{letters[-1]}][\),\ ]*', output) |
|
try: |
|
find_flag = False |
|
if len(pred_answer) == 0: |
|
for idx, opt in enumerate(options): |
|
|
|
if opt.lower() in output.lower(): |
|
pred_idx = idx |
|
find_flag = True |
|
break |
|
else: |
|
pred_answer = pred_answer[0].strip() |
|
pred_answer = pred_answer.strip('()') |
|
pred_idx = letters.index(pred_answer) |
|
find_flag = True |
|
|
|
assert find_flag, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(vid, instruct, output) |
|
except: |
|
traceback.print_exc() |
|
pred_idx = 2 |
|
|
|
return pred_idx |
|
|
|
|
|
def run_inference(args): |
|
disable_torch_init() |
|
|
|
model, processor, tokenizer = model_init(args.model_path) |
|
|
|
answer_file = os.path.expanduser(args.answer_file) |
|
os.makedirs(os.path.dirname(answer_file), exist_ok=True) |
|
ans_file = open(answer_file, "w") |
|
|
|
val_loader = build_mvbench_eval(args, processor['video']) |
|
|
|
|
|
for i, line in enumerate(tqdm(val_loader)): |
|
vid = line['video_path'][0] |
|
video_tensor = line['video'][0] |
|
task_type = line['task_type'][0] |
|
instruct = line['instruct'][0] |
|
letters = list(zip(*line['letters']))[0] |
|
options = list(zip(*line['options']))[0] |
|
answer_idx = line['answer_idx'][0].item() |
|
|
|
output = mm_infer( |
|
video_tensor, |
|
instruct, |
|
model=model, |
|
tokenizer=tokenizer, |
|
modal='video', |
|
do_sample=False, |
|
) |
|
|
|
pred_idx = mvbench_dump(vid, instruct, letters, options, output) |
|
|
|
ans_file.write(json.dumps({"vid": vid, "task_type": task_type, "pred": pred_idx, "gt": answer_idx}) + '\n') |
|
|
|
ans_file.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--model-path', help='', required=True) |
|
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) |
|
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) |
|
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--device", type=str, required=False, default='cuda:0') |
|
parser.add_argument("--batch-size", type=int, default=1) |
|
parser.add_argument("--num-workers", type=int, default=8) |
|
args = parser.parse_args() |
|
|
|
run_inference(args) |
|
|