|
import os |
|
import re |
|
import math |
|
import json |
|
import argparse |
|
import warnings |
|
from tqdm import tqdm |
|
|
|
import torch |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
import sys |
|
sys.path.append('./') |
|
from videollama2 import model_init, mm_infer |
|
from videollama2.utils import disable_torch_init |
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
class VCGPTDataset(Dataset): |
|
|
|
video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv'] |
|
|
|
def __init__(self, data_list, processor): |
|
self.data_list = data_list |
|
self.processor = processor |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def __getitem__(self, idx): |
|
line = self.data_list[idx] |
|
question = line['Q'] |
|
answer = line['A'] |
|
video_name = line['video_name'] |
|
|
|
for fmt in self.video_formats: |
|
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
break |
|
|
|
video_tensor = self.processor(video_path) |
|
|
|
return { |
|
'video': video_tensor, |
|
'video_name': video_name, |
|
'question': question, |
|
'answer': answer, |
|
} |
|
|
|
|
|
def collate_fn(batch): |
|
vid = [x['video'] for x in batch] |
|
v_id = [x['video_name'] for x in batch] |
|
qus = [x['question'] for x in batch] |
|
ans = [x['answer'] for x in batch] |
|
vid = torch.stack(vid, dim=0) |
|
return vid, v_id, qus, ans |
|
|
|
|
|
def run_inference(args): |
|
disable_torch_init() |
|
|
|
|
|
model, processor, tokenizer = model_init(args.model_path) |
|
|
|
questions = json.load(open(args.question_file, "r")) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
|
|
assert args.batch_size == 1, "Batch size must be 1 for inference" |
|
dataset = VCGPTDataset(questions, processor['video']) |
|
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn) |
|
|
|
answer_file = os.path.expanduser(args.answer_file) |
|
os.makedirs(os.path.dirname(answer_file), exist_ok=True) |
|
ans_file = open(answer_file, "w") |
|
|
|
|
|
for i, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)): |
|
|
|
|
|
video_tensor = video_tensors[0] |
|
video_name = video_names[0] |
|
question = questions[0] |
|
answer = answers[0] |
|
|
|
output = mm_infer( |
|
video_tensor, |
|
question, |
|
model=model, |
|
tokenizer=tokenizer, |
|
modal='video', |
|
do_sample=False, |
|
) |
|
|
|
qa = {'video_name': video_name, 'Q': question, 'A': answer, 'P': output} |
|
|
|
ans_file.write(json.dumps(qa) + "\n") |
|
|
|
ans_file.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--model-path', help='', required=True) |
|
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) |
|
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) |
|
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--device", type=str, required=False, default='cuda:0') |
|
parser.add_argument("--batch-size", type=int, required=False, default=1) |
|
parser.add_argument("--num-workers", type=int, required=False, default=8) |
|
args = parser.parse_args() |
|
|
|
run_inference(args) |
|
|