|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from abc import ABC, abstractmethod |
|
|
|
import einops |
|
import torch |
|
import torch.nn as nn |
|
|
|
from .projector import load_mm_projector, build_vision_projector |
|
from .encoder import build_vision_tower |
|
from ..constants import IGNORE_INDEX, NUM_FRAMES, MODAL_INDEX_MAP |
|
|
|
|
|
class Videollama2MetaModel: |
|
|
|
def __init__(self, config): |
|
super(Videollama2MetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = build_vision_projector(config) |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
|
|
if self.get_vision_tower() is None: |
|
vision_tower = build_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
vision_tower.load_model() |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') |
|
self.config.mm_hidden_size = vision_tower.hidden_size |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
|
|
if getattr(self, 'mm_projector', None) is None: |
|
self.mm_projector = build_vision_projector(self.config) |
|
else: |
|
|
|
for p in self.mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
if os.path.exists(pretrain_mm_mlp_adapter): |
|
is_local = True |
|
if os.path.isdir(pretrain_mm_mlp_adapter): |
|
mm_projector_weights = load_mm_projector(pretrain_mm_mlp_adapter) |
|
else: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
else: |
|
|
|
is_local = False |
|
pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter.replace('mm_projector.bin', '') |
|
pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter.strip('/').strip('\\').strip() |
|
mm_projector_weights = load_mm_projector(pretrain_mm_mlp_adapter) |
|
|
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} |
|
|
|
|
|
|
|
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False) |
|
|
|
|
|
class Videollama2MetaForCausalLM(ABC): |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def num_frames(self): |
|
if hasattr(self.config, 'num_frames'): |
|
return self.config.num_frames |
|
else: |
|
return NUM_FRAMES |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def encode_images_or_videos(self, images): |
|
num_frames = self.config.num_frames if hasattr(self.config, 'num_frames') else NUM_FRAMES |
|
|
|
data_batch = [] |
|
for i, (data, modal) in enumerate(images): |
|
if modal == 'image': |
|
data = data.expand(num_frames, -1, -1, -1) |
|
else: |
|
data = data |
|
data_batch.append(data) |
|
|
|
data_batch = torch.stack(data_batch, dim=0) |
|
|
|
assert len(data_batch.size()) == 5 |
|
batch_size = data_batch.size(0) |
|
|
|
frames = einops.rearrange(data_batch, 'b t c h w -> (b t) c h w') |
|
frames_features = self.get_model().get_vision_tower()(frames) |
|
frames_features = einops.rearrange(frames_features, '(b t) n h -> b t n h', b = batch_size) |
|
|
|
return self.temporal_aggregator(frames_features) |
|
|
|
def temporal_aggregator(self, frames_features): |
|
"""Temporal aggregation of frame features. |
|
Args: |
|
frames_features (torch.Tensor): Frame features with shape (b, t, n, h). |
|
Returns: |
|
torch.Tensor: Video features with shape (b, n, h). |
|
""" |
|
|
|
|
|
if self.config.mm_projector_type == "mlp2x_gelu" or self.config.mm_projector_type == "linear": |
|
video_features = self.get_model().mm_projector(frames_features.mean(1)) |
|
|
|
elif self.config.mm_projector_type == "spatial_conv": |
|
video_features = self.get_model().mm_projector(frames_features) |
|
|
|
elif self.config.mm_projector_type == "spatial_pool": |
|
video_features = self.get_model().mm_projector(frames_features) |
|
|
|
elif "tc_connector" in self.config.mm_projector_type or "tp_connector" in self.config.mm_projector_type: |
|
video_features = self.get_model().mm_projector(frames_features) |
|
else: |
|
raise Exception(f"Unsupported projector type {self.config.mm_projector_type}!!!") |
|
|
|
return video_features |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, attention_mask, past_key_values, labels, images |
|
): |
|
vision_tower = self.get_vision_tower() |
|
|
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
|
|
|
|
return input_ids, attention_mask, past_key_values, None, labels |
|
|
|
mm_features = self.encode_images_or_videos(images) |
|
|
|
new_input_embeds = [] |
|
new_labels = [] if labels is not None else None |
|
cur_mm_idx = 0 |
|
|
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_multimodals = sum((cur_input_ids == mm_token_idx).sum() for mm_token_idx in MODAL_INDEX_MAP.values()) |
|
|
|
if num_multimodals == 0: |
|
half_len = cur_input_ids.shape[0] // 2 |
|
cur_mm_features = mm_features[cur_mm_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) |
|
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_mm_features[0:0], cur_input_embeds_2], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
if labels is not None: |
|
new_labels.append(labels[batch_idx]) |
|
cur_mm_idx += 1 |
|
continue |
|
|
|
cur_new_input_embeds = [] |
|
if labels is not None: |
|
cur_labels = labels[batch_idx] |
|
cur_new_labels = [] |
|
assert cur_labels.shape == cur_input_ids.shape |
|
|
|
mm_token_indices = torch.where(sum([cur_input_ids == mm_token_idx for mm_token_idx in MODAL_INDEX_MAP.values()]))[0] |
|
while mm_token_indices.numel() > 0: |
|
cur_mm_features = mm_features[cur_mm_idx] |
|
mm_token_start = mm_token_indices[0] |
|
|
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:mm_token_start])) |
|
cur_new_input_embeds.append(cur_mm_features) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:mm_token_start]) |
|
cur_new_labels.append(torch.full((cur_mm_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_labels = cur_labels[mm_token_start+1:] |
|
|
|
cur_mm_idx += 1 |
|
cur_input_ids = cur_input_ids[mm_token_start+1:] |
|
mm_token_indices = torch.where(sum([cur_input_ids == mm_token_idx for mm_token_idx in MODAL_INDEX_MAP.values()]))[0] |
|
|
|
if cur_input_ids.numel() > 0: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels) |
|
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
if labels is not None: |
|
cur_new_labels = torch.cat(cur_new_labels, dim=0) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): |
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
new_input_embeds_align = [] |
|
for cur_new_embed in new_input_embeds: |
|
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) |
|
new_input_embeds_align.append(cur_new_embed) |
|
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) |
|
|
|
if labels is not None: |
|
new_labels_align = [] |
|
_new_labels = new_labels |
|
for cur_new_label in new_labels: |
|
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) |
|
new_labels_align.append(cur_new_label) |
|
new_labels = torch.stack(new_labels_align, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attention_mask = [] |
|
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): |
|
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) |
|
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
assert attention_mask.shape == new_labels.shape |
|
else: |
|
new_input_embeds = torch.stack(new_input_embeds, dim=0) |
|
if labels is not None: |
|
new_labels = torch.stack(new_labels, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) |
|
assert attention_mask.shape == new_input_embeds.shape[:2] |
|
|
|
return None, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|