Aliayub1995
commited on
Commit
•
a16ec50
1
Parent(s):
4c4dee6
Upload handler.py
Browse files- handler.py +18 -57
handler.py
CHANGED
@@ -16,67 +16,28 @@ class EndpointHandler:
|
|
16 |
self.model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B'
|
17 |
self.model, self.processor, self.tokenizer = model_init(self.model_path)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
Handle inference requests.
|
22 |
-
|
23 |
-
Args:
|
24 |
-
data (Dict[str, Any]): The input data for inference. Expected keys:
|
25 |
-
- 'modal' (str): 'video' or 'image'
|
26 |
-
- 'modal_path' (str): Path to the video or image file
|
27 |
-
- 'instruct' (str): The instruction/query to process
|
28 |
-
|
29 |
-
Returns:
|
30 |
-
List[Dict[str, Any]]: The output of the inference.
|
31 |
-
"""
|
32 |
-
modal = data.get("modal", "video")
|
33 |
-
modal_path = data.get("modal_path", "")
|
34 |
-
instruct = data.get("instruct", "")
|
35 |
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
output = mm_infer(
|
41 |
-
self.processor[modal](modal_path),
|
42 |
-
instruct,
|
43 |
-
model=self.model,
|
44 |
-
tokenizer=self.tokenizer,
|
45 |
-
do_sample=False,
|
46 |
-
modal=modal
|
47 |
-
)
|
48 |
|
49 |
-
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
|
54 |
-
# class EndpointHandler:
|
55 |
-
# def __init__(self, path: str = ""):
|
56 |
-
# """
|
57 |
-
# Initialize the handler by setting up the environment and loading the model.
|
58 |
-
# """
|
59 |
-
# # Use a pipeline as a high-level helper to download and load the model
|
60 |
-
# self.pipe = pipeline("visual-question-answering", model="DAMO-NLP-SG/VideoLLaMA2-8x7B")
|
61 |
-
# print("Model downloaded and pipeline created successfully.")
|
62 |
|
63 |
-
# def __call__(self, data):
|
64 |
-
# """
|
65 |
-
# Handle inference requests.
|
66 |
-
|
67 |
-
# Args:
|
68 |
-
# data (dict): Input data containing 'image' and 'question'.
|
69 |
-
|
70 |
-
# Returns:
|
71 |
-
# dict: The output from the model.
|
72 |
-
# """
|
73 |
-
# image = data.get("image")
|
74 |
-
# question = data.get("question")
|
75 |
-
|
76 |
-
# if not image or not question:
|
77 |
-
# raise ValueError("Both 'image' and 'question' must be provided in the input data.")
|
78 |
-
|
79 |
-
# # Use the pipeline to perform visual question answering
|
80 |
-
# output = self.pipe(image=image, question=question)
|
81 |
-
|
82 |
-
# return output
|
|
|
16 |
self.model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B'
|
17 |
self.model, self.processor, self.tokenizer = model_init(self.model_path)
|
18 |
|
19 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
20 |
+
print(f"Received data: {data}") # Debugging: Print received data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
modal = data.get("modal", "video")
|
23 |
+
modal_path = data.get("modal_path", "")
|
24 |
+
instruct = data.get("instruct", "")
|
25 |
|
26 |
+
print(f"Modal: {modal}, Modal Path: {modal_path}, Instruct: {instruct}") # Debugging: Print extracted values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
if not modal_path or not instruct:
|
29 |
+
raise ValueError("Both 'modal_path' and 'instruct' must be provided in the input data.")
|
30 |
|
31 |
+
# Perform inference
|
32 |
+
output = mm_infer(
|
33 |
+
self.processor[modal](modal_path),
|
34 |
+
instruct,
|
35 |
+
model=self.model,
|
36 |
+
tokenizer=self.tokenizer,
|
37 |
+
do_sample=False,
|
38 |
+
modal=modal
|
39 |
+
)
|
40 |
|
41 |
+
return [{"output": output}]
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|