# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright: # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from abc import ABC, abstractmethod import einops import torch import torch.nn as nn from .projector import load_mm_projector, build_vision_projector from .encoder import build_vision_tower from ..constants import IGNORE_INDEX, NUM_FRAMES, MODAL_INDEX_MAP class Videollama2MetaModel: def __init__(self, config): super(Videollama2MetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=True) self.mm_projector = build_vision_projector(config) def get_vision_tower(self): vision_tower = getattr(self, 'vision_tower', None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_vision_tower = vision_tower if self.get_vision_tower() is None: vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower else: if fsdp is not None and len(fsdp) > 0: vision_tower = self.vision_tower[0] else: vision_tower = self.vision_tower vision_tower.load_model() self.config.use_mm_proj = True self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') self.config.mm_hidden_size = vision_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature if getattr(self, 'mm_projector', None) is None: self.mm_projector = build_vision_projector(self.config) else: # In case it is frozen by LoRA for p in self.mm_projector.parameters(): p.requires_grad = True if pretrain_mm_mlp_adapter is not None: if os.path.exists(pretrain_mm_mlp_adapter): is_local = True if os.path.isdir(pretrain_mm_mlp_adapter): mm_projector_weights = load_mm_projector(pretrain_mm_mlp_adapter) else: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') else: # Support loading projector weights from remote HuggingFace model hub is_local = False pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter.replace('mm_projector.bin', '') pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter.strip('/').strip('\\').strip() mm_projector_weights = load_mm_projector(pretrain_mm_mlp_adapter) def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} # self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) # set strict=False to avoid missing key error regarding bert.embeddings.position_ids self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False) class Videollama2MetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def num_frames(self): if hasattr(self.config, 'num_frames'): return self.config.num_frames else: return NUM_FRAMES def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_images_or_videos(self, images): num_frames = self.config.num_frames if hasattr(self.config, 'num_frames') else NUM_FRAMES data_batch = [] for i, (data, modal) in enumerate(images): if modal == 'image': data = data.expand(num_frames, -1, -1, -1) else: data = data data_batch.append(data) data_batch = torch.stack(data_batch, dim=0) assert len(data_batch.size()) == 5 batch_size = data_batch.size(0) frames = einops.rearrange(data_batch, 'b t c h w -> (b t) c h w') frames_features = self.get_model().get_vision_tower()(frames) frames_features = einops.rearrange(frames_features, '(b t) n h -> b t n h', b = batch_size) return self.temporal_aggregator(frames_features) def temporal_aggregator(self, frames_features): """Temporal aggregation of frame features. Args: frames_features (torch.Tensor): Frame features with shape (b, t, n, h). Returns: torch.Tensor: Video features with shape (b, n, h). """ # TODO: improve the merging method. # *********** mean pooling ************* if self.config.mm_projector_type == "mlp2x_gelu" or self.config.mm_projector_type == "linear": video_features = self.get_model().mm_projector(frames_features.mean(1)) # *********** spatial convolution ************* elif self.config.mm_projector_type == "spatial_conv": video_features = self.get_model().mm_projector(frames_features) # *********** spatial pooling ************* elif self.config.mm_projector_type == "spatial_pool": video_features = self.get_model().mm_projector(frames_features) # *********** time ************ elif "tc_connector" in self.config.mm_projector_type or "tp_connector" in self.config.mm_projector_type: video_features = self.get_model().mm_projector(frames_features) else: raise Exception(f"Unsupported projector type {self.config.mm_projector_type}!!!") return video_features def prepare_inputs_labels_for_multimodal( self, input_ids, attention_mask, past_key_values, labels, images ): vision_tower = self.get_vision_tower() # NOTE: text-only situation if vision_tower is None or images is None or input_ids.shape[1] == 1: # if past_key_values is not None and vision_tower is not None and Xs is not None and input_ids.shape[1] == 1: # attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) return input_ids, attention_mask, past_key_values, None, labels mm_features = self.encode_images_or_videos(images) new_input_embeds = [] new_labels = [] if labels is not None else None cur_mm_idx = 0 # replace image/video/audio tokens with pre-computed embeddings for batch_idx, cur_input_ids in enumerate(input_ids): num_multimodals = sum((cur_input_ids == mm_token_idx).sum() for mm_token_idx in MODAL_INDEX_MAP.values()) # pure text input if num_multimodals == 0: half_len = cur_input_ids.shape[0] // 2 cur_mm_features = mm_features[cur_mm_idx] cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) cur_input_embeds = torch.cat([cur_input_embeds_1, cur_mm_features[0:0], cur_input_embeds_2], dim=0) new_input_embeds.append(cur_input_embeds) if labels is not None: new_labels.append(labels[batch_idx]) cur_mm_idx += 1 continue cur_new_input_embeds = [] if labels is not None: cur_labels = labels[batch_idx] cur_new_labels = [] assert cur_labels.shape == cur_input_ids.shape mm_token_indices = torch.where(sum([cur_input_ids == mm_token_idx for mm_token_idx in MODAL_INDEX_MAP.values()]))[0] while mm_token_indices.numel() > 0: cur_mm_features = mm_features[cur_mm_idx] mm_token_start = mm_token_indices[0] cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:mm_token_start])) cur_new_input_embeds.append(cur_mm_features) if labels is not None: cur_new_labels.append(cur_labels[:mm_token_start]) cur_new_labels.append(torch.full((cur_mm_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_labels = cur_labels[mm_token_start+1:] cur_mm_idx += 1 cur_input_ids = cur_input_ids[mm_token_start+1:] mm_token_indices = torch.where(sum([cur_input_ids == mm_token_idx for mm_token_idx in MODAL_INDEX_MAP.values()]))[0] if cur_input_ids.numel() > 0: cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) if labels is not None: cur_new_labels.append(cur_labels) cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] # NOTE: one cur_new_input_embeds per each cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) new_input_embeds.append(cur_new_input_embeds) if labels is not None: cur_new_labels = torch.cat(cur_new_labels, dim=0) new_labels.append(cur_new_labels) # padding if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): max_len = max(x.shape[0] for x in new_input_embeds) new_input_embeds_align = [] for cur_new_embed in new_input_embeds: cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) new_input_embeds_align.append(cur_new_embed) new_input_embeds = torch.stack(new_input_embeds_align, dim=0) if labels is not None: new_labels_align = [] _new_labels = new_labels for cur_new_label in new_labels: cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) new_labels_align.append(cur_new_label) new_labels = torch.stack(new_labels_align, dim=0) if attention_mask is not None: new_attention_mask = [] for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) new_attention_mask.append(cur_new_attention_mask) attention_mask = torch.stack(new_attention_mask, dim=0) assert attention_mask.shape == new_labels.shape else: new_input_embeds = torch.stack(new_input_embeds, dim=0) if labels is not None: new_labels = torch.stack(new_labels, dim=0) if attention_mask is not None: new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) assert attention_mask.shape == new_input_embeds.shape[:2] return None, attention_mask, past_key_values, new_input_embeds, new_labels