Update README.md
Browse files
README.md
CHANGED
|
@@ -7,7 +7,7 @@ license: apache-2.0
|
|
| 7 |
</div>
|
| 8 |
|
| 9 |
<p align="center">
|
| 10 |
-
<a href="https://arxiv.org/abs/">Arxiv</a
|
| 11 |
</p>
|
| 12 |
|
| 13 |
## Introduction
|
|
@@ -74,7 +74,7 @@ Since ERank is a pointwise reranker, it has low latency compared with listwise m
|
|
| 74 |
<img src="./assets/latency.png" width=400px>
|
| 75 |
</div>
|
| 76 |
|
| 77 |
-
For more details, please refer to our [Paper](https://arxiv.org/abs/).
|
| 78 |
|
| 79 |
## Usage
|
| 80 |
|
|
@@ -86,9 +86,9 @@ from examples.ERank_vLLM import ERank_vLLM
|
|
| 86 |
from examples.utils import hybrid_scores
|
| 87 |
|
| 88 |
# select a model
|
| 89 |
-
model_name_or_path = "Alibaba-NLP/ERank-4B"
|
| 90 |
# model_name_or_path = "Alibaba-NLP/ERank-14B"
|
| 91 |
-
|
| 92 |
|
| 93 |
# use vLLM or Transformer
|
| 94 |
# reranker = ERank_Transformer(model_name_or_path)
|
|
@@ -130,5 +130,13 @@ Please refer to the `examples` directory for details, in which we also provide t
|
|
| 130 |
If you find our work helpful, feel free to give us a cite.
|
| 131 |
|
| 132 |
```
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
```
|
|
|
|
| 7 |
</div>
|
| 8 |
|
| 9 |
<p align="center">
|
| 10 |
+
<a href="https://arxiv.org/abs/2509.00520">Arxiv</a>
|
| 11 |
</p>
|
| 12 |
|
| 13 |
## Introduction
|
|
|
|
| 74 |
<img src="./assets/latency.png" width=400px>
|
| 75 |
</div>
|
| 76 |
|
| 77 |
+
For more details, please refer to our [Paper](https://arxiv.org/abs/2509.00520).
|
| 78 |
|
| 79 |
## Usage
|
| 80 |
|
|
|
|
| 86 |
from examples.utils import hybrid_scores
|
| 87 |
|
| 88 |
# select a model
|
| 89 |
+
# model_name_or_path = "Alibaba-NLP/ERank-4B"
|
| 90 |
# model_name_or_path = "Alibaba-NLP/ERank-14B"
|
| 91 |
+
model_name_or_path = "Alibaba-NLP/ERank-32B"
|
| 92 |
|
| 93 |
# use vLLM or Transformer
|
| 94 |
# reranker = ERank_Transformer(model_name_or_path)
|
|
|
|
| 130 |
If you find our work helpful, feel free to give us a cite.
|
| 131 |
|
| 132 |
```
|
| 133 |
+
@misc{ERank,
|
| 134 |
+
title={ERank: Fusing Supervised Fine-Tuning and Reinforcement Learning for Effective and Efficient Text Reranking},
|
| 135 |
+
author={Yuzheng Cai and Yanzhao Zhang and Dingkun Long and Mingxin Li and Pengjun Xie and Weiguo Zheng},
|
| 136 |
+
year={2025},
|
| 137 |
+
eprint={2509.00520},
|
| 138 |
+
archivePrefix={arXiv},
|
| 139 |
+
primaryClass={cs.IR},
|
| 140 |
+
url={https://arxiv.org/abs/2509.00520},
|
| 141 |
+
}
|
| 142 |
```
|