Safetensors
qwen3
Ucreate commited on
Commit
5c3e66a
·
verified ·
1 Parent(s): 6b2e913

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -5
README.md CHANGED
@@ -7,7 +7,7 @@ license: apache-2.0
7
  </div>
8
 
9
  <p align="center">
10
- <a href="https://arxiv.org/abs/">Arxiv</a>&nbsp | &nbsp<a href="https://github.com/YZ-Cai/ERank">Github</a>
11
  </p>
12
 
13
  ## Introduction
@@ -74,7 +74,7 @@ Since ERank is a pointwise reranker, it has low latency compared with listwise m
74
  <img src="./assets/latency.png" width=400px>
75
  </div>
76
 
77
- For more details, please refer to our [Paper](https://arxiv.org/abs/).
78
 
79
  ## Usage
80
 
@@ -86,9 +86,9 @@ from examples.ERank_vLLM import ERank_vLLM
86
  from examples.utils import hybrid_scores
87
 
88
  # select a model
89
- model_name_or_path = "Alibaba-NLP/ERank-4B"
90
  # model_name_or_path = "Alibaba-NLP/ERank-14B"
91
- # model_name_or_path = "Alibaba-NLP/ERank-32B"
92
 
93
  # use vLLM or Transformer
94
  # reranker = ERank_Transformer(model_name_or_path)
@@ -130,5 +130,13 @@ Please refer to the `examples` directory for details, in which we also provide t
130
  If you find our work helpful, feel free to give us a cite.
131
 
132
  ```
133
-
 
 
 
 
 
 
 
 
134
  ```
 
7
  </div>
8
 
9
  <p align="center">
10
+ <a href="https://arxiv.org/abs/2509.00520">Arxiv</a>
11
  </p>
12
 
13
  ## Introduction
 
74
  <img src="./assets/latency.png" width=400px>
75
  </div>
76
 
77
+ For more details, please refer to our [Paper](https://arxiv.org/abs/2509.00520).
78
 
79
  ## Usage
80
 
 
86
  from examples.utils import hybrid_scores
87
 
88
  # select a model
89
+ # model_name_or_path = "Alibaba-NLP/ERank-4B"
90
  # model_name_or_path = "Alibaba-NLP/ERank-14B"
91
+ model_name_or_path = "Alibaba-NLP/ERank-32B"
92
 
93
  # use vLLM or Transformer
94
  # reranker = ERank_Transformer(model_name_or_path)
 
130
  If you find our work helpful, feel free to give us a cite.
131
 
132
  ```
133
+ @misc{ERank,
134
+ title={ERank: Fusing Supervised Fine-Tuning and Reinforcement Learning for Effective and Efficient Text Reranking},
135
+ author={Yuzheng Cai and Yanzhao Zhang and Dingkun Long and Mingxin Li and Pengjun Xie and Weiguo Zheng},
136
+ year={2025},
137
+ eprint={2509.00520},
138
+ archivePrefix={arXiv},
139
+ primaryClass={cs.IR},
140
+ url={https://arxiv.org/abs/2509.00520},
141
+ }
142
  ```