Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,3316 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- sentence-transformers
|
5 |
+
- transformers
|
6 |
+
- Qwen2
|
7 |
+
- sentence-similarity
|
8 |
+
license: apache-2.0
|
9 |
+
model-index:
|
10 |
+
- name: gte-qwen2-7B-instruct
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: Classification
|
14 |
+
dataset:
|
15 |
+
type: mteb/amazon_counterfactual
|
16 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
17 |
+
config: en
|
18 |
+
split: test
|
19 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
20 |
+
metrics:
|
21 |
+
- type: accuracy
|
22 |
+
value: 88.01492537313432
|
23 |
+
- type: ap
|
24 |
+
value: 59.096217055359276
|
25 |
+
- type: f1
|
26 |
+
value: 83.2699173062069
|
27 |
+
- task:
|
28 |
+
type: Classification
|
29 |
+
dataset:
|
30 |
+
type: mteb/amazon_polarity
|
31 |
+
name: MTEB AmazonPolarityClassification
|
32 |
+
config: default
|
33 |
+
split: test
|
34 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
35 |
+
metrics:
|
36 |
+
- type: accuracy
|
37 |
+
value: 97.29805
|
38 |
+
- type: ap
|
39 |
+
value: 95.97973142381882
|
40 |
+
- type: f1
|
41 |
+
value: 97.29773206176378
|
42 |
+
- task:
|
43 |
+
type: Classification
|
44 |
+
dataset:
|
45 |
+
type: mteb/amazon_reviews_multi
|
46 |
+
name: MTEB AmazonReviewsClassification (en)
|
47 |
+
config: en
|
48 |
+
split: test
|
49 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
50 |
+
metrics:
|
51 |
+
- type: accuracy
|
52 |
+
value: 62.798
|
53 |
+
- type: f1
|
54 |
+
value: 61.33195375425034
|
55 |
+
- task:
|
56 |
+
type: Retrieval
|
57 |
+
dataset:
|
58 |
+
type: mteb/arguana
|
59 |
+
name: MTEB ArguAna
|
60 |
+
config: default
|
61 |
+
split: test
|
62 |
+
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
|
63 |
+
metrics:
|
64 |
+
- type: map_at_1
|
65 |
+
value: 36.629
|
66 |
+
- type: map_at_10
|
67 |
+
value: 54.982
|
68 |
+
- type: map_at_100
|
69 |
+
value: 55.355
|
70 |
+
- type: map_at_1000
|
71 |
+
value: 55.355
|
72 |
+
- type: map_at_3
|
73 |
+
value: 50.036
|
74 |
+
- type: map_at_5
|
75 |
+
value: 53.25
|
76 |
+
- type: mrr_at_1
|
77 |
+
value: 37.624
|
78 |
+
- type: mrr_at_10
|
79 |
+
value: 55.376000000000005
|
80 |
+
- type: mrr_at_100
|
81 |
+
value: 55.749
|
82 |
+
- type: mrr_at_1000
|
83 |
+
value: 55.749
|
84 |
+
- type: mrr_at_3
|
85 |
+
value: 50.461999999999996
|
86 |
+
- type: mrr_at_5
|
87 |
+
value: 53.644999999999996
|
88 |
+
- type: ndcg_at_1
|
89 |
+
value: 36.629
|
90 |
+
- type: ndcg_at_10
|
91 |
+
value: 64.35499999999999
|
92 |
+
- type: ndcg_at_100
|
93 |
+
value: 65.778
|
94 |
+
- type: ndcg_at_1000
|
95 |
+
value: 65.778
|
96 |
+
- type: ndcg_at_3
|
97 |
+
value: 54.478
|
98 |
+
- type: ndcg_at_5
|
99 |
+
value: 60.260000000000005
|
100 |
+
- type: precision_at_1
|
101 |
+
value: 36.629
|
102 |
+
- type: precision_at_10
|
103 |
+
value: 9.381
|
104 |
+
- type: precision_at_100
|
105 |
+
value: 0.996
|
106 |
+
- type: precision_at_1000
|
107 |
+
value: 0.1
|
108 |
+
- type: precision_at_3
|
109 |
+
value: 22.451
|
110 |
+
- type: precision_at_5
|
111 |
+
value: 16.273
|
112 |
+
- type: recall_at_1
|
113 |
+
value: 36.629
|
114 |
+
- type: recall_at_10
|
115 |
+
value: 93.812
|
116 |
+
- type: recall_at_100
|
117 |
+
value: 99.644
|
118 |
+
- type: recall_at_1000
|
119 |
+
value: 99.644
|
120 |
+
- type: recall_at_3
|
121 |
+
value: 67.354
|
122 |
+
- type: recall_at_5
|
123 |
+
value: 81.366
|
124 |
+
- task:
|
125 |
+
type: Clustering
|
126 |
+
dataset:
|
127 |
+
type: mteb/arxiv-clustering-p2p
|
128 |
+
name: MTEB ArxivClusteringP2P
|
129 |
+
config: default
|
130 |
+
split: test
|
131 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
132 |
+
metrics:
|
133 |
+
- type: v_measure
|
134 |
+
value: 56.30960182540703
|
135 |
+
- task:
|
136 |
+
type: Clustering
|
137 |
+
dataset:
|
138 |
+
type: mteb/arxiv-clustering-s2s
|
139 |
+
name: MTEB ArxivClusteringS2S
|
140 |
+
config: default
|
141 |
+
split: test
|
142 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
143 |
+
metrics:
|
144 |
+
- type: v_measure
|
145 |
+
value: 51.858431775176975
|
146 |
+
- task:
|
147 |
+
type: Reranking
|
148 |
+
dataset:
|
149 |
+
type: mteb/askubuntudupquestions-reranking
|
150 |
+
name: MTEB AskUbuntuDupQuestions
|
151 |
+
config: default
|
152 |
+
split: test
|
153 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
154 |
+
metrics:
|
155 |
+
- type: map
|
156 |
+
value: 67.5678414928039
|
157 |
+
- type: mrr
|
158 |
+
value: 79.56305236776153
|
159 |
+
- task:
|
160 |
+
type: STS
|
161 |
+
dataset:
|
162 |
+
type: mteb/biosses-sts
|
163 |
+
name: MTEB BIOSSES
|
164 |
+
config: default
|
165 |
+
split: test
|
166 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
167 |
+
metrics:
|
168 |
+
- type: cos_sim_pearson
|
169 |
+
value: 82.32511136457549
|
170 |
+
- type: cos_sim_spearman
|
171 |
+
value: 79.34518142776068
|
172 |
+
- type: euclidean_pearson
|
173 |
+
value: 81.09762569927126
|
174 |
+
- type: euclidean_spearman
|
175 |
+
value: 79.33554265391781
|
176 |
+
- type: manhattan_pearson
|
177 |
+
value: 81.33942162521643
|
178 |
+
- type: manhattan_spearman
|
179 |
+
value: 79.91206181439438
|
180 |
+
- task:
|
181 |
+
type: Classification
|
182 |
+
dataset:
|
183 |
+
type: mteb/banking77
|
184 |
+
name: MTEB Banking77Classification
|
185 |
+
config: default
|
186 |
+
split: test
|
187 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
188 |
+
metrics:
|
189 |
+
- type: accuracy
|
190 |
+
value: 85.99675324675324
|
191 |
+
- type: f1
|
192 |
+
value: 85.5564660877528
|
193 |
+
- task:
|
194 |
+
type: Clustering
|
195 |
+
dataset:
|
196 |
+
type: mteb/biorxiv-clustering-p2p
|
197 |
+
name: MTEB BiorxivClusteringP2P
|
198 |
+
config: default
|
199 |
+
split: test
|
200 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
201 |
+
metrics:
|
202 |
+
- type: v_measure
|
203 |
+
value: 50.413005916654384
|
204 |
+
- task:
|
205 |
+
type: Clustering
|
206 |
+
dataset:
|
207 |
+
type: mteb/biorxiv-clustering-s2s
|
208 |
+
name: MTEB BiorxivClusteringS2S
|
209 |
+
config: default
|
210 |
+
split: test
|
211 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
212 |
+
metrics:
|
213 |
+
- type: v_measure
|
214 |
+
value: 46.58170679922341
|
215 |
+
- task:
|
216 |
+
type: Retrieval
|
217 |
+
dataset:
|
218 |
+
type: BeIR/cqadupstack
|
219 |
+
name: MTEB CQADupstackAndroidRetrieval
|
220 |
+
config: default
|
221 |
+
split: test
|
222 |
+
revision: f46a197baaae43b4f621051089b82a364682dfeb
|
223 |
+
metrics:
|
224 |
+
- type: map_at_1
|
225 |
+
value: 34.588
|
226 |
+
- type: map_at_10
|
227 |
+
value: 47.851
|
228 |
+
- type: map_at_100
|
229 |
+
value: 49.484
|
230 |
+
- type: map_at_1000
|
231 |
+
value: 49.6
|
232 |
+
- type: map_at_3
|
233 |
+
value: 43.34
|
234 |
+
- type: map_at_5
|
235 |
+
value: 45.734
|
236 |
+
- type: mrr_at_1
|
237 |
+
value: 42.203
|
238 |
+
- type: mrr_at_10
|
239 |
+
value: 53.315999999999995
|
240 |
+
- type: mrr_at_100
|
241 |
+
value: 53.977
|
242 |
+
- type: mrr_at_1000
|
243 |
+
value: 54.001
|
244 |
+
- type: mrr_at_3
|
245 |
+
value: 50.381
|
246 |
+
- type: mrr_at_5
|
247 |
+
value: 52.198
|
248 |
+
- type: ndcg_at_1
|
249 |
+
value: 42.203
|
250 |
+
- type: ndcg_at_10
|
251 |
+
value: 55.143
|
252 |
+
- type: ndcg_at_100
|
253 |
+
value: 60.278
|
254 |
+
- type: ndcg_at_1000
|
255 |
+
value: 61.497
|
256 |
+
- type: ndcg_at_3
|
257 |
+
value: 48.9
|
258 |
+
- type: ndcg_at_5
|
259 |
+
value: 51.712
|
260 |
+
- type: precision_at_1
|
261 |
+
value: 42.203
|
262 |
+
- type: precision_at_10
|
263 |
+
value: 11.016
|
264 |
+
- type: precision_at_100
|
265 |
+
value: 1.718
|
266 |
+
- type: precision_at_1000
|
267 |
+
value: 0.219
|
268 |
+
- type: precision_at_3
|
269 |
+
value: 24.224999999999998
|
270 |
+
- type: precision_at_5
|
271 |
+
value: 17.711
|
272 |
+
- type: recall_at_1
|
273 |
+
value: 34.588
|
274 |
+
- type: recall_at_10
|
275 |
+
value: 69.91000000000001
|
276 |
+
- type: recall_at_100
|
277 |
+
value: 91.01700000000001
|
278 |
+
- type: recall_at_1000
|
279 |
+
value: 98.02199999999999
|
280 |
+
- type: recall_at_3
|
281 |
+
value: 51.9
|
282 |
+
- type: recall_at_5
|
283 |
+
value: 59.604
|
284 |
+
- task:
|
285 |
+
type: Retrieval
|
286 |
+
dataset:
|
287 |
+
type: BeIR/cqadupstack
|
288 |
+
name: MTEB CQADupstackEnglishRetrieval
|
289 |
+
config: default
|
290 |
+
split: test
|
291 |
+
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
|
292 |
+
metrics:
|
293 |
+
- type: map_at_1
|
294 |
+
value: 35.649
|
295 |
+
- type: map_at_10
|
296 |
+
value: 47.713
|
297 |
+
- type: map_at_100
|
298 |
+
value: 49.043
|
299 |
+
- type: map_at_1000
|
300 |
+
value: 49.178
|
301 |
+
- type: map_at_3
|
302 |
+
value: 44.355
|
303 |
+
- type: map_at_5
|
304 |
+
value: 46.152
|
305 |
+
- type: mrr_at_1
|
306 |
+
value: 44.268
|
307 |
+
- type: mrr_at_10
|
308 |
+
value: 53.403999999999996
|
309 |
+
- type: mrr_at_100
|
310 |
+
value: 54.035999999999994
|
311 |
+
- type: mrr_at_1000
|
312 |
+
value: 54.078
|
313 |
+
- type: mrr_at_3
|
314 |
+
value: 51.507000000000005
|
315 |
+
- type: mrr_at_5
|
316 |
+
value: 52.583999999999996
|
317 |
+
- type: ndcg_at_1
|
318 |
+
value: 44.268
|
319 |
+
- type: ndcg_at_10
|
320 |
+
value: 53.679
|
321 |
+
- type: ndcg_at_100
|
322 |
+
value: 57.794000000000004
|
323 |
+
- type: ndcg_at_1000
|
324 |
+
value: 59.74
|
325 |
+
- type: ndcg_at_3
|
326 |
+
value: 49.348
|
327 |
+
- type: ndcg_at_5
|
328 |
+
value: 51.266999999999996
|
329 |
+
- type: precision_at_1
|
330 |
+
value: 44.268
|
331 |
+
- type: precision_at_10
|
332 |
+
value: 10.120999999999999
|
333 |
+
- type: precision_at_100
|
334 |
+
value: 1.566
|
335 |
+
- type: precision_at_1000
|
336 |
+
value: 0.20600000000000002
|
337 |
+
- type: precision_at_3
|
338 |
+
value: 23.864
|
339 |
+
- type: precision_at_5
|
340 |
+
value: 16.650000000000002
|
341 |
+
- type: recall_at_1
|
342 |
+
value: 35.649
|
343 |
+
- type: recall_at_10
|
344 |
+
value: 64.152
|
345 |
+
- type: recall_at_100
|
346 |
+
value: 81.096
|
347 |
+
- type: recall_at_1000
|
348 |
+
value: 92.957
|
349 |
+
- type: recall_at_3
|
350 |
+
value: 51.498
|
351 |
+
- type: recall_at_5
|
352 |
+
value: 56.977
|
353 |
+
- task:
|
354 |
+
type: Retrieval
|
355 |
+
dataset:
|
356 |
+
type: BeIR/cqadupstack
|
357 |
+
name: MTEB CQADupstackGamingRetrieval
|
358 |
+
config: default
|
359 |
+
split: test
|
360 |
+
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
|
361 |
+
metrics:
|
362 |
+
- type: map_at_1
|
363 |
+
value: 38.372
|
364 |
+
- type: map_at_10
|
365 |
+
value: 52.693
|
366 |
+
- type: map_at_100
|
367 |
+
value: 53.796
|
368 |
+
- type: map_at_1000
|
369 |
+
value: 53.836
|
370 |
+
- type: map_at_3
|
371 |
+
value: 48.818
|
372 |
+
- type: map_at_5
|
373 |
+
value: 51.052
|
374 |
+
- type: mrr_at_1
|
375 |
+
value: 44.013000000000005
|
376 |
+
- type: mrr_at_10
|
377 |
+
value: 55.769999999999996
|
378 |
+
- type: mrr_at_100
|
379 |
+
value: 56.415000000000006
|
380 |
+
- type: mrr_at_1000
|
381 |
+
value: 56.435
|
382 |
+
- type: mrr_at_3
|
383 |
+
value: 52.884
|
384 |
+
- type: mrr_at_5
|
385 |
+
value: 54.552
|
386 |
+
- type: ndcg_at_1
|
387 |
+
value: 44.013000000000005
|
388 |
+
- type: ndcg_at_10
|
389 |
+
value: 59.45
|
390 |
+
- type: ndcg_at_100
|
391 |
+
value: 63.422
|
392 |
+
- type: ndcg_at_1000
|
393 |
+
value: 64.214
|
394 |
+
- type: ndcg_at_3
|
395 |
+
value: 52.829
|
396 |
+
- type: ndcg_at_5
|
397 |
+
value: 56.079
|
398 |
+
- type: precision_at_1
|
399 |
+
value: 44.013000000000005
|
400 |
+
- type: precision_at_10
|
401 |
+
value: 9.912
|
402 |
+
- type: precision_at_100
|
403 |
+
value: 1.286
|
404 |
+
- type: precision_at_1000
|
405 |
+
value: 0.13899999999999998
|
406 |
+
- type: precision_at_3
|
407 |
+
value: 23.992
|
408 |
+
- type: precision_at_5
|
409 |
+
value: 16.803
|
410 |
+
- type: recall_at_1
|
411 |
+
value: 38.372
|
412 |
+
- type: recall_at_10
|
413 |
+
value: 76.279
|
414 |
+
- type: recall_at_100
|
415 |
+
value: 92.842
|
416 |
+
- type: recall_at_1000
|
417 |
+
value: 98.41
|
418 |
+
- type: recall_at_3
|
419 |
+
value: 58.738
|
420 |
+
- type: recall_at_5
|
421 |
+
value: 66.51899999999999
|
422 |
+
- task:
|
423 |
+
type: Retrieval
|
424 |
+
dataset:
|
425 |
+
type: BeIR/cqadupstack
|
426 |
+
name: MTEB CQADupstackGisRetrieval
|
427 |
+
config: default
|
428 |
+
split: test
|
429 |
+
revision: 5003b3064772da1887988e05400cf3806fe491f2
|
430 |
+
metrics:
|
431 |
+
- type: map_at_1
|
432 |
+
value: 26.784999999999997
|
433 |
+
- type: map_at_10
|
434 |
+
value: 37.152
|
435 |
+
- type: map_at_100
|
436 |
+
value: 38.371
|
437 |
+
- type: map_at_1000
|
438 |
+
value: 38.437
|
439 |
+
- type: map_at_3
|
440 |
+
value: 34.211999999999996
|
441 |
+
- type: map_at_5
|
442 |
+
value: 35.791000000000004
|
443 |
+
- type: mrr_at_1
|
444 |
+
value: 29.153000000000002
|
445 |
+
- type: mrr_at_10
|
446 |
+
value: 39.312999999999995
|
447 |
+
- type: mrr_at_100
|
448 |
+
value: 40.32
|
449 |
+
- type: mrr_at_1000
|
450 |
+
value: 40.367999999999995
|
451 |
+
- type: mrr_at_3
|
452 |
+
value: 36.760999999999996
|
453 |
+
- type: mrr_at_5
|
454 |
+
value: 38.083
|
455 |
+
- type: ndcg_at_1
|
456 |
+
value: 29.153000000000002
|
457 |
+
- type: ndcg_at_10
|
458 |
+
value: 42.785000000000004
|
459 |
+
- type: ndcg_at_100
|
460 |
+
value: 48.613
|
461 |
+
- type: ndcg_at_1000
|
462 |
+
value: 50.166
|
463 |
+
- type: ndcg_at_3
|
464 |
+
value: 37.255
|
465 |
+
- type: ndcg_at_5
|
466 |
+
value: 39.763999999999996
|
467 |
+
- type: precision_at_1
|
468 |
+
value: 29.153000000000002
|
469 |
+
- type: precision_at_10
|
470 |
+
value: 6.734
|
471 |
+
- type: precision_at_100
|
472 |
+
value: 1.0250000000000001
|
473 |
+
- type: precision_at_1000
|
474 |
+
value: 0.11900000000000001
|
475 |
+
- type: precision_at_3
|
476 |
+
value: 16.234
|
477 |
+
- type: precision_at_5
|
478 |
+
value: 11.232000000000001
|
479 |
+
- type: recall_at_1
|
480 |
+
value: 26.784999999999997
|
481 |
+
- type: recall_at_10
|
482 |
+
value: 57.915000000000006
|
483 |
+
- type: recall_at_100
|
484 |
+
value: 84.473
|
485 |
+
- type: recall_at_1000
|
486 |
+
value: 96.011
|
487 |
+
- type: recall_at_3
|
488 |
+
value: 43.105
|
489 |
+
- type: recall_at_5
|
490 |
+
value: 49.15
|
491 |
+
- task:
|
492 |
+
type: Retrieval
|
493 |
+
dataset:
|
494 |
+
type: BeIR/cqadupstack
|
495 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
496 |
+
config: default
|
497 |
+
split: test
|
498 |
+
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
|
499 |
+
metrics:
|
500 |
+
- type: map_at_1
|
501 |
+
value: 20.24
|
502 |
+
- type: map_at_10
|
503 |
+
value: 31.493
|
504 |
+
- type: map_at_100
|
505 |
+
value: 32.771
|
506 |
+
- type: map_at_1000
|
507 |
+
value: 32.883
|
508 |
+
- type: map_at_3
|
509 |
+
value: 27.062
|
510 |
+
- type: map_at_5
|
511 |
+
value: 29.421999999999997
|
512 |
+
- type: mrr_at_1
|
513 |
+
value: 25.622
|
514 |
+
- type: mrr_at_10
|
515 |
+
value: 35.729
|
516 |
+
- type: mrr_at_100
|
517 |
+
value: 36.613
|
518 |
+
- type: mrr_at_1000
|
519 |
+
value: 36.665
|
520 |
+
- type: mrr_at_3
|
521 |
+
value: 32.048
|
522 |
+
- type: mrr_at_5
|
523 |
+
value: 34.169
|
524 |
+
- type: ndcg_at_1
|
525 |
+
value: 25.622
|
526 |
+
- type: ndcg_at_10
|
527 |
+
value: 38.463
|
528 |
+
- type: ndcg_at_100
|
529 |
+
value: 43.909
|
530 |
+
- type: ndcg_at_1000
|
531 |
+
value: 46.21
|
532 |
+
- type: ndcg_at_3
|
533 |
+
value: 30.563000000000002
|
534 |
+
- type: ndcg_at_5
|
535 |
+
value: 34.178999999999995
|
536 |
+
- type: precision_at_1
|
537 |
+
value: 25.622
|
538 |
+
- type: precision_at_10
|
539 |
+
value: 7.7490000000000006
|
540 |
+
- type: precision_at_100
|
541 |
+
value: 1.1780000000000002
|
542 |
+
- type: precision_at_1000
|
543 |
+
value: 0.149
|
544 |
+
- type: precision_at_3
|
545 |
+
value: 15.049999999999999
|
546 |
+
- type: precision_at_5
|
547 |
+
value: 11.616999999999999
|
548 |
+
- type: recall_at_1
|
549 |
+
value: 20.24
|
550 |
+
- type: recall_at_10
|
551 |
+
value: 55.657000000000004
|
552 |
+
- type: recall_at_100
|
553 |
+
value: 78.803
|
554 |
+
- type: recall_at_1000
|
555 |
+
value: 94.801
|
556 |
+
- type: recall_at_3
|
557 |
+
value: 34.171
|
558 |
+
- type: recall_at_5
|
559 |
+
value: 43.16
|
560 |
+
- task:
|
561 |
+
type: Retrieval
|
562 |
+
dataset:
|
563 |
+
type: BeIR/cqadupstack
|
564 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
565 |
+
config: default
|
566 |
+
split: test
|
567 |
+
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
|
568 |
+
metrics:
|
569 |
+
- type: map_at_1
|
570 |
+
value: 32.501000000000005
|
571 |
+
- type: map_at_10
|
572 |
+
value: 46.286
|
573 |
+
- type: map_at_100
|
574 |
+
value: 47.732
|
575 |
+
- type: map_at_1000
|
576 |
+
value: 47.814
|
577 |
+
- type: map_at_3
|
578 |
+
value: 41.957
|
579 |
+
- type: map_at_5
|
580 |
+
value: 44.506
|
581 |
+
- type: mrr_at_1
|
582 |
+
value: 39.75
|
583 |
+
- type: mrr_at_10
|
584 |
+
value: 51.285000000000004
|
585 |
+
- type: mrr_at_100
|
586 |
+
value: 52.051
|
587 |
+
- type: mrr_at_1000
|
588 |
+
value: 52.075
|
589 |
+
- type: mrr_at_3
|
590 |
+
value: 48.315999999999995
|
591 |
+
- type: mrr_at_5
|
592 |
+
value: 50.125
|
593 |
+
- type: ndcg_at_1
|
594 |
+
value: 39.75
|
595 |
+
- type: ndcg_at_10
|
596 |
+
value: 53.361999999999995
|
597 |
+
- type: ndcg_at_100
|
598 |
+
value: 58.703
|
599 |
+
- type: ndcg_at_1000
|
600 |
+
value: 59.962
|
601 |
+
- type: ndcg_at_3
|
602 |
+
value: 46.786
|
603 |
+
- type: ndcg_at_5
|
604 |
+
value: 50.169
|
605 |
+
- type: precision_at_1
|
606 |
+
value: 39.75
|
607 |
+
- type: precision_at_10
|
608 |
+
value: 10.154
|
609 |
+
- type: precision_at_100
|
610 |
+
value: 1.485
|
611 |
+
- type: precision_at_1000
|
612 |
+
value: 0.17600000000000002
|
613 |
+
- type: precision_at_3
|
614 |
+
value: 23.003
|
615 |
+
- type: precision_at_5
|
616 |
+
value: 16.766000000000002
|
617 |
+
- type: recall_at_1
|
618 |
+
value: 32.501000000000005
|
619 |
+
- type: recall_at_10
|
620 |
+
value: 68.901
|
621 |
+
- type: recall_at_100
|
622 |
+
value: 90.527
|
623 |
+
- type: recall_at_1000
|
624 |
+
value: 98.307
|
625 |
+
- type: recall_at_3
|
626 |
+
value: 51.056000000000004
|
627 |
+
- type: recall_at_5
|
628 |
+
value: 59.471
|
629 |
+
- task:
|
630 |
+
type: Retrieval
|
631 |
+
dataset:
|
632 |
+
type: BeIR/cqadupstack
|
633 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
634 |
+
config: default
|
635 |
+
split: test
|
636 |
+
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
|
637 |
+
metrics:
|
638 |
+
- type: map_at_1
|
639 |
+
value: 27.962999999999997
|
640 |
+
- type: map_at_10
|
641 |
+
value: 41.434
|
642 |
+
- type: map_at_100
|
643 |
+
value: 42.961
|
644 |
+
- type: map_at_1000
|
645 |
+
value: 43.051
|
646 |
+
- type: map_at_3
|
647 |
+
value: 37.579
|
648 |
+
- type: map_at_5
|
649 |
+
value: 39.579
|
650 |
+
- type: mrr_at_1
|
651 |
+
value: 34.932
|
652 |
+
- type: mrr_at_10
|
653 |
+
value: 46.455999999999996
|
654 |
+
- type: mrr_at_100
|
655 |
+
value: 47.362
|
656 |
+
- type: mrr_at_1000
|
657 |
+
value: 47.398
|
658 |
+
- type: mrr_at_3
|
659 |
+
value: 43.855
|
660 |
+
- type: mrr_at_5
|
661 |
+
value: 45.322
|
662 |
+
- type: ndcg_at_1
|
663 |
+
value: 34.932
|
664 |
+
- type: ndcg_at_10
|
665 |
+
value: 48.323
|
666 |
+
- type: ndcg_at_100
|
667 |
+
value: 54.173
|
668 |
+
- type: ndcg_at_1000
|
669 |
+
value: 55.69
|
670 |
+
- type: ndcg_at_3
|
671 |
+
value: 42.498000000000005
|
672 |
+
- type: ndcg_at_5
|
673 |
+
value: 44.973
|
674 |
+
- type: precision_at_1
|
675 |
+
value: 34.932
|
676 |
+
- type: precision_at_10
|
677 |
+
value: 9.224
|
678 |
+
- type: precision_at_100
|
679 |
+
value: 1.429
|
680 |
+
- type: precision_at_1000
|
681 |
+
value: 0.172
|
682 |
+
- type: precision_at_3
|
683 |
+
value: 21.005
|
684 |
+
- type: precision_at_5
|
685 |
+
value: 15.0
|
686 |
+
- type: recall_at_1
|
687 |
+
value: 27.962999999999997
|
688 |
+
- type: recall_at_10
|
689 |
+
value: 63.563
|
690 |
+
- type: recall_at_100
|
691 |
+
value: 87.679
|
692 |
+
- type: recall_at_1000
|
693 |
+
value: 97.381
|
694 |
+
- type: recall_at_3
|
695 |
+
value: 47.205999999999996
|
696 |
+
- type: recall_at_5
|
697 |
+
value: 53.784
|
698 |
+
- task:
|
699 |
+
type: Retrieval
|
700 |
+
dataset:
|
701 |
+
type: BeIR/cqadupstack
|
702 |
+
name: MTEB CQADupstackRetrieval
|
703 |
+
config: default
|
704 |
+
split: test
|
705 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
706 |
+
metrics:
|
707 |
+
- type: map_at_1
|
708 |
+
value: 27.9895
|
709 |
+
- type: map_at_10
|
710 |
+
value: 39.67808333333333
|
711 |
+
- type: map_at_100
|
712 |
+
value: 41.05
|
713 |
+
- type: map_at_1000
|
714 |
+
value: 41.15800000000001
|
715 |
+
- type: map_at_3
|
716 |
+
value: 36.079499999999996
|
717 |
+
- type: map_at_5
|
718 |
+
value: 38.056749999999994
|
719 |
+
- type: mrr_at_1
|
720 |
+
value: 33.405583333333325
|
721 |
+
- type: mrr_at_10
|
722 |
+
value: 43.6965
|
723 |
+
- type: mrr_at_100
|
724 |
+
value: 44.568000000000005
|
725 |
+
- type: mrr_at_1000
|
726 |
+
value: 44.61208333333334
|
727 |
+
- type: mrr_at_3
|
728 |
+
value: 40.96574999999999
|
729 |
+
- type: mrr_at_5
|
730 |
+
value: 42.529833333333336
|
731 |
+
- type: ndcg_at_1
|
732 |
+
value: 33.405583333333325
|
733 |
+
- type: ndcg_at_10
|
734 |
+
value: 46.016
|
735 |
+
- type: ndcg_at_100
|
736 |
+
value: 51.39475
|
737 |
+
- type: ndcg_at_1000
|
738 |
+
value: 53.17333333333334
|
739 |
+
- type: ndcg_at_3
|
740 |
+
value: 40.166666666666664
|
741 |
+
- type: ndcg_at_5
|
742 |
+
value: 42.899750000000004
|
743 |
+
- type: precision_at_1
|
744 |
+
value: 33.405583333333325
|
745 |
+
- type: precision_at_10
|
746 |
+
value: 8.408999999999999
|
747 |
+
- type: precision_at_100
|
748 |
+
value: 1.3129166666666665
|
749 |
+
- type: precision_at_1000
|
750 |
+
value: 0.16583333333333336
|
751 |
+
- type: precision_at_3
|
752 |
+
value: 19.05825
|
753 |
+
- type: precision_at_5
|
754 |
+
value: 13.6845
|
755 |
+
- type: recall_at_1
|
756 |
+
value: 27.9895
|
757 |
+
- type: recall_at_10
|
758 |
+
value: 60.572416666666676
|
759 |
+
- type: recall_at_100
|
760 |
+
value: 83.63975
|
761 |
+
- type: recall_at_1000
|
762 |
+
value: 95.58775
|
763 |
+
- type: recall_at_3
|
764 |
+
value: 44.402750000000005
|
765 |
+
- type: recall_at_5
|
766 |
+
value: 51.40116666666666
|
767 |
+
- task:
|
768 |
+
type: Retrieval
|
769 |
+
dataset:
|
770 |
+
type: BeIR/cqadupstack
|
771 |
+
name: MTEB CQADupstackStatsRetrieval
|
772 |
+
config: default
|
773 |
+
split: test
|
774 |
+
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
|
775 |
+
metrics:
|
776 |
+
- type: map_at_1
|
777 |
+
value: 24.451
|
778 |
+
- type: map_at_10
|
779 |
+
value: 34.526
|
780 |
+
- type: map_at_100
|
781 |
+
value: 35.732
|
782 |
+
- type: map_at_1000
|
783 |
+
value: 35.824
|
784 |
+
- type: map_at_3
|
785 |
+
value: 31.503999999999998
|
786 |
+
- type: map_at_5
|
787 |
+
value: 33.241
|
788 |
+
- type: mrr_at_1
|
789 |
+
value: 28.221
|
790 |
+
- type: mrr_at_10
|
791 |
+
value: 37.34
|
792 |
+
- type: mrr_at_100
|
793 |
+
value: 38.389
|
794 |
+
- type: mrr_at_1000
|
795 |
+
value: 38.443
|
796 |
+
- type: mrr_at_3
|
797 |
+
value: 34.714
|
798 |
+
- type: mrr_at_5
|
799 |
+
value: 36.217
|
800 |
+
- type: ndcg_at_1
|
801 |
+
value: 28.221
|
802 |
+
- type: ndcg_at_10
|
803 |
+
value: 40.105000000000004
|
804 |
+
- type: ndcg_at_100
|
805 |
+
value: 45.619
|
806 |
+
- type: ndcg_at_1000
|
807 |
+
value: 47.597
|
808 |
+
- type: ndcg_at_3
|
809 |
+
value: 34.711
|
810 |
+
- type: ndcg_at_5
|
811 |
+
value: 37.38
|
812 |
+
- type: precision_at_1
|
813 |
+
value: 28.221
|
814 |
+
- type: precision_at_10
|
815 |
+
value: 6.7330000000000005
|
816 |
+
- type: precision_at_100
|
817 |
+
value: 1.0170000000000001
|
818 |
+
- type: precision_at_1000
|
819 |
+
value: 0.126
|
820 |
+
- type: precision_at_3
|
821 |
+
value: 15.798000000000002
|
822 |
+
- type: precision_at_5
|
823 |
+
value: 11.227
|
824 |
+
- type: recall_at_1
|
825 |
+
value: 24.451
|
826 |
+
- type: recall_at_10
|
827 |
+
value: 54.332
|
828 |
+
- type: recall_at_100
|
829 |
+
value: 78.842
|
830 |
+
- type: recall_at_1000
|
831 |
+
value: 92.868
|
832 |
+
- type: recall_at_3
|
833 |
+
value: 39.495999999999995
|
834 |
+
- type: recall_at_5
|
835 |
+
value: 46.198
|
836 |
+
- task:
|
837 |
+
type: Retrieval
|
838 |
+
dataset:
|
839 |
+
type: BeIR/cqadupstack
|
840 |
+
name: MTEB CQADupstackTexRetrieval
|
841 |
+
config: default
|
842 |
+
split: test
|
843 |
+
revision: 46989137a86843e03a6195de44b09deda022eec7
|
844 |
+
metrics:
|
845 |
+
- type: map_at_1
|
846 |
+
value: 18.989
|
847 |
+
- type: map_at_10
|
848 |
+
value: 28.189999999999998
|
849 |
+
- type: map_at_100
|
850 |
+
value: 29.575000000000003
|
851 |
+
- type: map_at_1000
|
852 |
+
value: 29.705
|
853 |
+
- type: map_at_3
|
854 |
+
value: 25.406000000000002
|
855 |
+
- type: map_at_5
|
856 |
+
value: 26.851000000000003
|
857 |
+
- type: mrr_at_1
|
858 |
+
value: 23.400000000000002
|
859 |
+
- type: mrr_at_10
|
860 |
+
value: 32.231
|
861 |
+
- type: mrr_at_100
|
862 |
+
value: 33.239000000000004
|
863 |
+
- type: mrr_at_1000
|
864 |
+
value: 33.309
|
865 |
+
- type: mrr_at_3
|
866 |
+
value: 29.869
|
867 |
+
- type: mrr_at_5
|
868 |
+
value: 31.102999999999998
|
869 |
+
- type: ndcg_at_1
|
870 |
+
value: 23.400000000000002
|
871 |
+
- type: ndcg_at_10
|
872 |
+
value: 33.634
|
873 |
+
- type: ndcg_at_100
|
874 |
+
value: 39.772999999999996
|
875 |
+
- type: ndcg_at_1000
|
876 |
+
value: 42.385
|
877 |
+
- type: ndcg_at_3
|
878 |
+
value: 28.938999999999997
|
879 |
+
- type: ndcg_at_5
|
880 |
+
value: 30.913
|
881 |
+
- type: precision_at_1
|
882 |
+
value: 23.400000000000002
|
883 |
+
- type: precision_at_10
|
884 |
+
value: 6.366
|
885 |
+
- type: precision_at_100
|
886 |
+
value: 1.1159999999999999
|
887 |
+
- type: precision_at_1000
|
888 |
+
value: 0.153
|
889 |
+
- type: precision_at_3
|
890 |
+
value: 14.212
|
891 |
+
- type: precision_at_5
|
892 |
+
value: 10.151
|
893 |
+
- type: recall_at_1
|
894 |
+
value: 18.989
|
895 |
+
- type: recall_at_10
|
896 |
+
value: 45.837
|
897 |
+
- type: recall_at_100
|
898 |
+
value: 73.04899999999999
|
899 |
+
- type: recall_at_1000
|
900 |
+
value: 91.245
|
901 |
+
- type: recall_at_3
|
902 |
+
value: 32.309
|
903 |
+
- type: recall_at_5
|
904 |
+
value: 37.665
|
905 |
+
- task:
|
906 |
+
type: Retrieval
|
907 |
+
dataset:
|
908 |
+
type: BeIR/cqadupstack
|
909 |
+
name: MTEB CQADupstackUnixRetrieval
|
910 |
+
config: default
|
911 |
+
split: test
|
912 |
+
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
|
913 |
+
metrics:
|
914 |
+
- type: map_at_1
|
915 |
+
value: 30.595
|
916 |
+
- type: map_at_10
|
917 |
+
value: 42.286
|
918 |
+
- type: map_at_100
|
919 |
+
value: 43.586999999999996
|
920 |
+
- type: map_at_1000
|
921 |
+
value: 43.669000000000004
|
922 |
+
- type: map_at_3
|
923 |
+
value: 38.888
|
924 |
+
- type: map_at_5
|
925 |
+
value: 40.669
|
926 |
+
- type: mrr_at_1
|
927 |
+
value: 36.287000000000006
|
928 |
+
- type: mrr_at_10
|
929 |
+
value: 46.405
|
930 |
+
- type: mrr_at_100
|
931 |
+
value: 47.282999999999994
|
932 |
+
- type: mrr_at_1000
|
933 |
+
value: 47.327000000000005
|
934 |
+
- type: mrr_at_3
|
935 |
+
value: 43.874
|
936 |
+
- type: mrr_at_5
|
937 |
+
value: 45.414
|
938 |
+
- type: ndcg_at_1
|
939 |
+
value: 36.287000000000006
|
940 |
+
- type: ndcg_at_10
|
941 |
+
value: 48.407
|
942 |
+
- type: ndcg_at_100
|
943 |
+
value: 53.824000000000005
|
944 |
+
- type: ndcg_at_1000
|
945 |
+
value: 55.483000000000004
|
946 |
+
- type: ndcg_at_3
|
947 |
+
value: 42.9
|
948 |
+
- type: ndcg_at_5
|
949 |
+
value: 45.391999999999996
|
950 |
+
- type: precision_at_1
|
951 |
+
value: 36.287000000000006
|
952 |
+
- type: precision_at_10
|
953 |
+
value: 8.414000000000001
|
954 |
+
- type: precision_at_100
|
955 |
+
value: 1.232
|
956 |
+
- type: precision_at_1000
|
957 |
+
value: 0.147
|
958 |
+
- type: precision_at_3
|
959 |
+
value: 20.118
|
960 |
+
- type: precision_at_5
|
961 |
+
value: 13.993
|
962 |
+
- type: recall_at_1
|
963 |
+
value: 30.595
|
964 |
+
- type: recall_at_10
|
965 |
+
value: 62.656
|
966 |
+
- type: recall_at_100
|
967 |
+
value: 85.74199999999999
|
968 |
+
- type: recall_at_1000
|
969 |
+
value: 96.854
|
970 |
+
- type: recall_at_3
|
971 |
+
value: 47.413
|
972 |
+
- type: recall_at_5
|
973 |
+
value: 54.04
|
974 |
+
- task:
|
975 |
+
type: Retrieval
|
976 |
+
dataset:
|
977 |
+
type: BeIR/cqadupstack
|
978 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
979 |
+
config: default
|
980 |
+
split: test
|
981 |
+
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
|
982 |
+
metrics:
|
983 |
+
- type: map_at_1
|
984 |
+
value: 28.236
|
985 |
+
- type: map_at_10
|
986 |
+
value: 39.751
|
987 |
+
- type: map_at_100
|
988 |
+
value: 41.435
|
989 |
+
- type: map_at_1000
|
990 |
+
value: 41.677
|
991 |
+
- type: map_at_3
|
992 |
+
value: 35.957
|
993 |
+
- type: map_at_5
|
994 |
+
value: 38.112
|
995 |
+
- type: mrr_at_1
|
996 |
+
value: 33.794000000000004
|
997 |
+
- type: mrr_at_10
|
998 |
+
value: 44.449
|
999 |
+
- type: mrr_at_100
|
1000 |
+
value: 45.268
|
1001 |
+
- type: mrr_at_1000
|
1002 |
+
value: 45.311
|
1003 |
+
- type: mrr_at_3
|
1004 |
+
value: 41.502
|
1005 |
+
- type: mrr_at_5
|
1006 |
+
value: 43.142
|
1007 |
+
- type: ndcg_at_1
|
1008 |
+
value: 33.794000000000004
|
1009 |
+
- type: ndcg_at_10
|
1010 |
+
value: 46.787
|
1011 |
+
- type: ndcg_at_100
|
1012 |
+
value: 52.290000000000006
|
1013 |
+
- type: ndcg_at_1000
|
1014 |
+
value: 54.336
|
1015 |
+
- type: ndcg_at_3
|
1016 |
+
value: 40.78
|
1017 |
+
- type: ndcg_at_5
|
1018 |
+
value: 43.669999999999995
|
1019 |
+
- type: precision_at_1
|
1020 |
+
value: 33.794000000000004
|
1021 |
+
- type: precision_at_10
|
1022 |
+
value: 9.051
|
1023 |
+
- type: precision_at_100
|
1024 |
+
value: 1.7919999999999998
|
1025 |
+
- type: precision_at_1000
|
1026 |
+
value: 0.259
|
1027 |
+
- type: precision_at_3
|
1028 |
+
value: 19.368
|
1029 |
+
- type: precision_at_5
|
1030 |
+
value: 14.229
|
1031 |
+
- type: recall_at_1
|
1032 |
+
value: 28.236
|
1033 |
+
- type: recall_at_10
|
1034 |
+
value: 61.358000000000004
|
1035 |
+
- type: recall_at_100
|
1036 |
+
value: 85.028
|
1037 |
+
- type: recall_at_1000
|
1038 |
+
value: 97.813
|
1039 |
+
- type: recall_at_3
|
1040 |
+
value: 44.207
|
1041 |
+
- type: recall_at_5
|
1042 |
+
value: 51.885000000000005
|
1043 |
+
- task:
|
1044 |
+
type: Retrieval
|
1045 |
+
dataset:
|
1046 |
+
type: BeIR/cqadupstack
|
1047 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1048 |
+
config: default
|
1049 |
+
split: test
|
1050 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
1051 |
+
metrics:
|
1052 |
+
- type: map_at_1
|
1053 |
+
value: 17.505000000000003
|
1054 |
+
- type: map_at_10
|
1055 |
+
value: 26.762000000000004
|
1056 |
+
- type: map_at_100
|
1057 |
+
value: 28.113
|
1058 |
+
- type: map_at_1000
|
1059 |
+
value: 28.222
|
1060 |
+
- type: map_at_3
|
1061 |
+
value: 23.876
|
1062 |
+
- type: map_at_5
|
1063 |
+
value: 25.572
|
1064 |
+
- type: mrr_at_1
|
1065 |
+
value: 19.224
|
1066 |
+
- type: mrr_at_10
|
1067 |
+
value: 28.660000000000004
|
1068 |
+
- type: mrr_at_100
|
1069 |
+
value: 29.863
|
1070 |
+
- type: mrr_at_1000
|
1071 |
+
value: 29.935000000000002
|
1072 |
+
- type: mrr_at_3
|
1073 |
+
value: 25.878
|
1074 |
+
- type: mrr_at_5
|
1075 |
+
value: 27.449
|
1076 |
+
- type: ndcg_at_1
|
1077 |
+
value: 19.224
|
1078 |
+
- type: ndcg_at_10
|
1079 |
+
value: 32.054
|
1080 |
+
- type: ndcg_at_100
|
1081 |
+
value: 38.339
|
1082 |
+
- type: ndcg_at_1000
|
1083 |
+
value: 40.8
|
1084 |
+
- type: ndcg_at_3
|
1085 |
+
value: 26.491
|
1086 |
+
- type: ndcg_at_5
|
1087 |
+
value: 29.298999999999996
|
1088 |
+
- type: precision_at_1
|
1089 |
+
value: 19.224
|
1090 |
+
- type: precision_at_10
|
1091 |
+
value: 5.434
|
1092 |
+
- type: precision_at_100
|
1093 |
+
value: 0.911
|
1094 |
+
- type: precision_at_1000
|
1095 |
+
value: 0.125
|
1096 |
+
- type: precision_at_3
|
1097 |
+
value: 11.83
|
1098 |
+
- type: precision_at_5
|
1099 |
+
value: 8.834999999999999
|
1100 |
+
- type: recall_at_1
|
1101 |
+
value: 17.505000000000003
|
1102 |
+
- type: recall_at_10
|
1103 |
+
value: 46.309
|
1104 |
+
- type: recall_at_100
|
1105 |
+
value: 74.579
|
1106 |
+
- type: recall_at_1000
|
1107 |
+
value: 92.384
|
1108 |
+
- type: recall_at_3
|
1109 |
+
value: 31.734
|
1110 |
+
- type: recall_at_5
|
1111 |
+
value: 38.361000000000004
|
1112 |
+
- task:
|
1113 |
+
type: Classification
|
1114 |
+
dataset:
|
1115 |
+
type: mteb/emotion
|
1116 |
+
name: MTEB EmotionClassification
|
1117 |
+
config: default
|
1118 |
+
split: test
|
1119 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1120 |
+
metrics:
|
1121 |
+
- type: accuracy
|
1122 |
+
value: 67.085
|
1123 |
+
- type: f1
|
1124 |
+
value: 61.019909873305686
|
1125 |
+
- task:
|
1126 |
+
type: Retrieval
|
1127 |
+
dataset:
|
1128 |
+
type: mteb/fiqa
|
1129 |
+
name: MTEB FiQA2018
|
1130 |
+
config: default
|
1131 |
+
split: test
|
1132 |
+
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
|
1133 |
+
metrics:
|
1134 |
+
- type: map_at_1
|
1135 |
+
value: 32.251999999999995
|
1136 |
+
- type: map_at_10
|
1137 |
+
value: 53.98500000000001
|
1138 |
+
- type: map_at_100
|
1139 |
+
value: 56.093
|
1140 |
+
- type: map_at_1000
|
1141 |
+
value: 56.198
|
1142 |
+
- type: map_at_3
|
1143 |
+
value: 46.765
|
1144 |
+
- type: map_at_5
|
1145 |
+
value: 50.739999999999995
|
1146 |
+
- type: mrr_at_1
|
1147 |
+
value: 60.956999999999994
|
1148 |
+
- type: mrr_at_10
|
1149 |
+
value: 69.38600000000001
|
1150 |
+
- type: mrr_at_100
|
1151 |
+
value: 69.877
|
1152 |
+
- type: mrr_at_1000
|
1153 |
+
value: 69.884
|
1154 |
+
- type: mrr_at_3
|
1155 |
+
value: 67.052
|
1156 |
+
- type: mrr_at_5
|
1157 |
+
value: 68.356
|
1158 |
+
- type: ndcg_at_1
|
1159 |
+
value: 60.956999999999994
|
1160 |
+
- type: ndcg_at_10
|
1161 |
+
value: 62.78399999999999
|
1162 |
+
- type: ndcg_at_100
|
1163 |
+
value: 68.743
|
1164 |
+
- type: ndcg_at_1000
|
1165 |
+
value: 69.92399999999999
|
1166 |
+
- type: ndcg_at_3
|
1167 |
+
value: 57.336
|
1168 |
+
- type: ndcg_at_5
|
1169 |
+
value: 59.121
|
1170 |
+
- type: precision_at_1
|
1171 |
+
value: 60.956999999999994
|
1172 |
+
- type: precision_at_10
|
1173 |
+
value: 17.346
|
1174 |
+
- type: precision_at_100
|
1175 |
+
value: 2.3689999999999998
|
1176 |
+
- type: precision_at_1000
|
1177 |
+
value: 0.259
|
1178 |
+
- type: precision_at_3
|
1179 |
+
value: 37.912
|
1180 |
+
- type: precision_at_5
|
1181 |
+
value: 27.900999999999996
|
1182 |
+
- type: recall_at_1
|
1183 |
+
value: 32.251999999999995
|
1184 |
+
- type: recall_at_10
|
1185 |
+
value: 71.616
|
1186 |
+
- type: recall_at_100
|
1187 |
+
value: 92.685
|
1188 |
+
- type: recall_at_1000
|
1189 |
+
value: 98.983
|
1190 |
+
- type: recall_at_3
|
1191 |
+
value: 52.064
|
1192 |
+
- type: recall_at_5
|
1193 |
+
value: 60.49099999999999
|
1194 |
+
- task:
|
1195 |
+
type: Classification
|
1196 |
+
dataset:
|
1197 |
+
type: mteb/imdb
|
1198 |
+
name: MTEB ImdbClassification
|
1199 |
+
config: default
|
1200 |
+
split: test
|
1201 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1202 |
+
metrics:
|
1203 |
+
- type: accuracy
|
1204 |
+
value: 96.4592
|
1205 |
+
- type: ap
|
1206 |
+
value: 94.57299077219179
|
1207 |
+
- type: f1
|
1208 |
+
value: 96.45842059801627
|
1209 |
+
- task:
|
1210 |
+
type: Classification
|
1211 |
+
dataset:
|
1212 |
+
type: mteb/mtop_domain
|
1213 |
+
name: MTEB MTOPDomainClassification (en)
|
1214 |
+
config: en
|
1215 |
+
split: test
|
1216 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1217 |
+
metrics:
|
1218 |
+
- type: accuracy
|
1219 |
+
value: 98.45873233014134
|
1220 |
+
- type: f1
|
1221 |
+
value: 98.38426074551533
|
1222 |
+
- task:
|
1223 |
+
type: Classification
|
1224 |
+
dataset:
|
1225 |
+
type: mteb/mtop_intent
|
1226 |
+
name: MTEB MTOPIntentClassification (en)
|
1227 |
+
config: en
|
1228 |
+
split: test
|
1229 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1230 |
+
metrics:
|
1231 |
+
- type: accuracy
|
1232 |
+
value: 90.01823985408116
|
1233 |
+
- type: f1
|
1234 |
+
value: 70.71419843084274
|
1235 |
+
- task:
|
1236 |
+
type: Classification
|
1237 |
+
dataset:
|
1238 |
+
type: mteb/amazon_massive_intent
|
1239 |
+
name: MTEB MassiveIntentClassification (en)
|
1240 |
+
config: en
|
1241 |
+
split: test
|
1242 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1243 |
+
metrics:
|
1244 |
+
- type: accuracy
|
1245 |
+
value: 84.35104236718225
|
1246 |
+
- type: f1
|
1247 |
+
value: 82.50884520186432
|
1248 |
+
- task:
|
1249 |
+
type: Classification
|
1250 |
+
dataset:
|
1251 |
+
type: mteb/amazon_massive_scenario
|
1252 |
+
name: MTEB MassiveScenarioClassification (en)
|
1253 |
+
config: en
|
1254 |
+
split: test
|
1255 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1256 |
+
metrics:
|
1257 |
+
- type: accuracy
|
1258 |
+
value: 88.0665770006725
|
1259 |
+
- type: f1
|
1260 |
+
value: 87.06928510969733
|
1261 |
+
- task:
|
1262 |
+
type: Clustering
|
1263 |
+
dataset:
|
1264 |
+
type: mteb/medrxiv-clustering-p2p
|
1265 |
+
name: MTEB MedrxivClusteringP2P
|
1266 |
+
config: default
|
1267 |
+
split: test
|
1268 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1269 |
+
metrics:
|
1270 |
+
- type: v_measure
|
1271 |
+
value: 46.053400985420204
|
1272 |
+
- task:
|
1273 |
+
type: Clustering
|
1274 |
+
dataset:
|
1275 |
+
type: mteb/medrxiv-clustering-s2s
|
1276 |
+
name: MTEB MedrxivClusteringS2S
|
1277 |
+
config: default
|
1278 |
+
split: test
|
1279 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1280 |
+
metrics:
|
1281 |
+
- type: v_measure
|
1282 |
+
value: 44.445957227318054
|
1283 |
+
- task:
|
1284 |
+
type: Reranking
|
1285 |
+
dataset:
|
1286 |
+
type: mteb/mind_small
|
1287 |
+
name: MTEB MindSmallReranking
|
1288 |
+
config: default
|
1289 |
+
split: test
|
1290 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1291 |
+
metrics:
|
1292 |
+
- type: map
|
1293 |
+
value: 33.277065197675775
|
1294 |
+
- type: mrr
|
1295 |
+
value: 34.654704063060656
|
1296 |
+
- task:
|
1297 |
+
type: Retrieval
|
1298 |
+
dataset:
|
1299 |
+
type: mteb/nfcorpus
|
1300 |
+
name: MTEB NFCorpus
|
1301 |
+
config: default
|
1302 |
+
split: test
|
1303 |
+
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
|
1304 |
+
metrics:
|
1305 |
+
- type: map_at_1
|
1306 |
+
value: 6.728000000000001
|
1307 |
+
- type: map_at_10
|
1308 |
+
value: 15.052999999999999
|
1309 |
+
- type: map_at_100
|
1310 |
+
value: 19.901
|
1311 |
+
- type: map_at_1000
|
1312 |
+
value: 21.72
|
1313 |
+
- type: map_at_3
|
1314 |
+
value: 10.901
|
1315 |
+
- type: map_at_5
|
1316 |
+
value: 12.651000000000002
|
1317 |
+
- type: mrr_at_1
|
1318 |
+
value: 52.322
|
1319 |
+
- type: mrr_at_10
|
1320 |
+
value: 60.614999999999995
|
1321 |
+
- type: mrr_at_100
|
1322 |
+
value: 61.199000000000005
|
1323 |
+
- type: mrr_at_1000
|
1324 |
+
value: 61.227
|
1325 |
+
- type: mrr_at_3
|
1326 |
+
value: 58.977999999999994
|
1327 |
+
- type: mrr_at_5
|
1328 |
+
value: 59.907
|
1329 |
+
- type: ndcg_at_1
|
1330 |
+
value: 50.619
|
1331 |
+
- type: ndcg_at_10
|
1332 |
+
value: 40.278000000000006
|
1333 |
+
- type: ndcg_at_100
|
1334 |
+
value: 37.585
|
1335 |
+
- type: ndcg_at_1000
|
1336 |
+
value: 46.459
|
1337 |
+
- type: ndcg_at_3
|
1338 |
+
value: 46.143
|
1339 |
+
- type: ndcg_at_5
|
1340 |
+
value: 43.7
|
1341 |
+
- type: precision_at_1
|
1342 |
+
value: 52.012
|
1343 |
+
- type: precision_at_10
|
1344 |
+
value: 30.154999999999998
|
1345 |
+
- type: precision_at_100
|
1346 |
+
value: 9.87
|
1347 |
+
- type: precision_at_1000
|
1348 |
+
value: 2.343
|
1349 |
+
- type: precision_at_3
|
1350 |
+
value: 42.931000000000004
|
1351 |
+
- type: precision_at_5
|
1352 |
+
value: 37.771
|
1353 |
+
- type: recall_at_1
|
1354 |
+
value: 6.728000000000001
|
1355 |
+
- type: recall_at_10
|
1356 |
+
value: 19.372
|
1357 |
+
- type: recall_at_100
|
1358 |
+
value: 39.044000000000004
|
1359 |
+
- type: recall_at_1000
|
1360 |
+
value: 71.602
|
1361 |
+
- type: recall_at_3
|
1362 |
+
value: 12.328
|
1363 |
+
- type: recall_at_5
|
1364 |
+
value: 14.758
|
1365 |
+
- task:
|
1366 |
+
type: Retrieval
|
1367 |
+
dataset:
|
1368 |
+
type: mteb/quora
|
1369 |
+
name: MTEB QuoraRetrieval
|
1370 |
+
config: default
|
1371 |
+
split: test
|
1372 |
+
revision: None
|
1373 |
+
metrics:
|
1374 |
+
- type: map_at_1
|
1375 |
+
value: 72.421
|
1376 |
+
- type: map_at_10
|
1377 |
+
value: 86.648
|
1378 |
+
- type: map_at_100
|
1379 |
+
value: 87.258
|
1380 |
+
- type: map_at_1000
|
1381 |
+
value: 87.26899999999999
|
1382 |
+
- type: map_at_3
|
1383 |
+
value: 83.82
|
1384 |
+
- type: map_at_5
|
1385 |
+
value: 85.629
|
1386 |
+
- type: mrr_at_1
|
1387 |
+
value: 83.21
|
1388 |
+
- type: mrr_at_10
|
1389 |
+
value: 89.198
|
1390 |
+
- type: mrr_at_100
|
1391 |
+
value: 89.277
|
1392 |
+
- type: mrr_at_1000
|
1393 |
+
value: 89.277
|
1394 |
+
- type: mrr_at_3
|
1395 |
+
value: 88.428
|
1396 |
+
- type: mrr_at_5
|
1397 |
+
value: 88.98
|
1398 |
+
- type: ndcg_at_1
|
1399 |
+
value: 83.24000000000001
|
1400 |
+
- type: ndcg_at_10
|
1401 |
+
value: 90.067
|
1402 |
+
- type: ndcg_at_100
|
1403 |
+
value: 91.091
|
1404 |
+
- type: ndcg_at_1000
|
1405 |
+
value: 91.146
|
1406 |
+
- type: ndcg_at_3
|
1407 |
+
value: 87.6
|
1408 |
+
- type: ndcg_at_5
|
1409 |
+
value: 89.004
|
1410 |
+
- type: precision_at_1
|
1411 |
+
value: 83.24000000000001
|
1412 |
+
- type: precision_at_10
|
1413 |
+
value: 13.644
|
1414 |
+
- type: precision_at_100
|
1415 |
+
value: 1.542
|
1416 |
+
- type: precision_at_1000
|
1417 |
+
value: 0.157
|
1418 |
+
- type: precision_at_3
|
1419 |
+
value: 38.437
|
1420 |
+
- type: precision_at_5
|
1421 |
+
value: 25.194
|
1422 |
+
- type: recall_at_1
|
1423 |
+
value: 72.421
|
1424 |
+
- type: recall_at_10
|
1425 |
+
value: 96.49600000000001
|
1426 |
+
- type: recall_at_100
|
1427 |
+
value: 99.802
|
1428 |
+
- type: recall_at_1000
|
1429 |
+
value: 100.0
|
1430 |
+
- type: recall_at_3
|
1431 |
+
value: 89.31400000000001
|
1432 |
+
- type: recall_at_5
|
1433 |
+
value: 93.363
|
1434 |
+
- task:
|
1435 |
+
type: Clustering
|
1436 |
+
dataset:
|
1437 |
+
type: mteb/reddit-clustering
|
1438 |
+
name: MTEB RedditClustering
|
1439 |
+
config: default
|
1440 |
+
split: test
|
1441 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1442 |
+
metrics:
|
1443 |
+
- type: v_measure
|
1444 |
+
value: 73.97491289906442
|
1445 |
+
- task:
|
1446 |
+
type: Clustering
|
1447 |
+
dataset:
|
1448 |
+
type: mteb/reddit-clustering-p2p
|
1449 |
+
name: MTEB RedditClusteringP2P
|
1450 |
+
config: default
|
1451 |
+
split: test
|
1452 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1453 |
+
metrics:
|
1454 |
+
- type: v_measure
|
1455 |
+
value: 73.49590001712183
|
1456 |
+
- task:
|
1457 |
+
type: Retrieval
|
1458 |
+
dataset:
|
1459 |
+
type: mteb/scidocs
|
1460 |
+
name: MTEB SCIDOCS
|
1461 |
+
config: default
|
1462 |
+
split: test
|
1463 |
+
revision: None
|
1464 |
+
metrics:
|
1465 |
+
- type: map_at_1
|
1466 |
+
value: 6.978
|
1467 |
+
- type: map_at_10
|
1468 |
+
value: 18.307000000000002
|
1469 |
+
- type: map_at_100
|
1470 |
+
value: 21.605
|
1471 |
+
- type: map_at_1000
|
1472 |
+
value: 21.965
|
1473 |
+
- type: map_at_3
|
1474 |
+
value: 12.642000000000001
|
1475 |
+
- type: map_at_5
|
1476 |
+
value: 15.453
|
1477 |
+
- type: mrr_at_1
|
1478 |
+
value: 34.300000000000004
|
1479 |
+
- type: mrr_at_10
|
1480 |
+
value: 46.886
|
1481 |
+
- type: mrr_at_100
|
1482 |
+
value: 47.78
|
1483 |
+
- type: mrr_at_1000
|
1484 |
+
value: 47.795
|
1485 |
+
- type: mrr_at_3
|
1486 |
+
value: 42.467
|
1487 |
+
- type: mrr_at_5
|
1488 |
+
value: 45.427
|
1489 |
+
- type: ndcg_at_1
|
1490 |
+
value: 34.300000000000004
|
1491 |
+
- type: ndcg_at_10
|
1492 |
+
value: 29.372999999999998
|
1493 |
+
- type: ndcg_at_100
|
1494 |
+
value: 40.355000000000004
|
1495 |
+
- type: ndcg_at_1000
|
1496 |
+
value: 45.221000000000004
|
1497 |
+
- type: ndcg_at_3
|
1498 |
+
value: 27.230999999999998
|
1499 |
+
- type: ndcg_at_5
|
1500 |
+
value: 24.352
|
1501 |
+
- type: precision_at_1
|
1502 |
+
value: 34.300000000000004
|
1503 |
+
- type: precision_at_10
|
1504 |
+
value: 15.36
|
1505 |
+
- type: precision_at_100
|
1506 |
+
value: 3.116
|
1507 |
+
- type: precision_at_1000
|
1508 |
+
value: 0.426
|
1509 |
+
- type: precision_at_3
|
1510 |
+
value: 25.367
|
1511 |
+
- type: precision_at_5
|
1512 |
+
value: 21.62
|
1513 |
+
- type: recall_at_1
|
1514 |
+
value: 6.978
|
1515 |
+
- type: recall_at_10
|
1516 |
+
value: 31.142999999999997
|
1517 |
+
- type: recall_at_100
|
1518 |
+
value: 63.27199999999999
|
1519 |
+
- type: recall_at_1000
|
1520 |
+
value: 86.512
|
1521 |
+
- type: recall_at_3
|
1522 |
+
value: 15.433
|
1523 |
+
- type: recall_at_5
|
1524 |
+
value: 21.918000000000003
|
1525 |
+
- task:
|
1526 |
+
type: STS
|
1527 |
+
dataset:
|
1528 |
+
type: mteb/sickr-sts
|
1529 |
+
name: MTEB SICK-R
|
1530 |
+
config: default
|
1531 |
+
split: test
|
1532 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1533 |
+
metrics:
|
1534 |
+
- type: cos_sim_pearson
|
1535 |
+
value: 81.90996932803432
|
1536 |
+
- type: cos_sim_spearman
|
1537 |
+
value: 78.73848819688604
|
1538 |
+
- type: euclidean_pearson
|
1539 |
+
value: 78.82008134820491
|
1540 |
+
- type: euclidean_spearman
|
1541 |
+
value: 78.73797968799013
|
1542 |
+
- type: manhattan_pearson
|
1543 |
+
value: 78.98817729907871
|
1544 |
+
- type: manhattan_spearman
|
1545 |
+
value: 78.88989195290672
|
1546 |
+
- task:
|
1547 |
+
type: STS
|
1548 |
+
dataset:
|
1549 |
+
type: mteb/sts12-sts
|
1550 |
+
name: MTEB STS12
|
1551 |
+
config: default
|
1552 |
+
split: test
|
1553 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1554 |
+
metrics:
|
1555 |
+
- type: cos_sim_pearson
|
1556 |
+
value: 86.9169693104017
|
1557 |
+
- type: cos_sim_spearman
|
1558 |
+
value: 78.6067489618467
|
1559 |
+
- type: euclidean_pearson
|
1560 |
+
value: 83.04545335395649
|
1561 |
+
- type: euclidean_spearman
|
1562 |
+
value: 78.6070135484733
|
1563 |
+
- type: manhattan_pearson
|
1564 |
+
value: 83.49435095447187
|
1565 |
+
- type: manhattan_spearman
|
1566 |
+
value: 78.9690144080464
|
1567 |
+
- task:
|
1568 |
+
type: STS
|
1569 |
+
dataset:
|
1570 |
+
type: mteb/sts13-sts
|
1571 |
+
name: MTEB STS13
|
1572 |
+
config: default
|
1573 |
+
split: test
|
1574 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1575 |
+
metrics:
|
1576 |
+
- type: cos_sim_pearson
|
1577 |
+
value: 88.86389266236574
|
1578 |
+
- type: cos_sim_spearman
|
1579 |
+
value: 88.88070867328447
|
1580 |
+
- type: euclidean_pearson
|
1581 |
+
value: 88.52907860408021
|
1582 |
+
- type: euclidean_spearman
|
1583 |
+
value: 88.88041097815055
|
1584 |
+
- type: manhattan_pearson
|
1585 |
+
value: 88.65795865729802
|
1586 |
+
- type: manhattan_spearman
|
1587 |
+
value: 89.09614539167227
|
1588 |
+
- task:
|
1589 |
+
type: STS
|
1590 |
+
dataset:
|
1591 |
+
type: mteb/sts14-sts
|
1592 |
+
name: MTEB STS14
|
1593 |
+
config: default
|
1594 |
+
split: test
|
1595 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1596 |
+
metrics:
|
1597 |
+
- type: cos_sim_pearson
|
1598 |
+
value: 85.90258145848692
|
1599 |
+
- type: cos_sim_spearman
|
1600 |
+
value: 84.16679932371741
|
1601 |
+
- type: euclidean_pearson
|
1602 |
+
value: 84.95294032883719
|
1603 |
+
- type: euclidean_spearman
|
1604 |
+
value: 84.16781112349103
|
1605 |
+
- type: manhattan_pearson
|
1606 |
+
value: 85.18004344325733
|
1607 |
+
- type: manhattan_spearman
|
1608 |
+
value: 84.52374692147366
|
1609 |
+
- task:
|
1610 |
+
type: STS
|
1611 |
+
dataset:
|
1612 |
+
type: mteb/sts15-sts
|
1613 |
+
name: MTEB STS15
|
1614 |
+
config: default
|
1615 |
+
split: test
|
1616 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
1617 |
+
metrics:
|
1618 |
+
- type: cos_sim_pearson
|
1619 |
+
value: 87.89191454971963
|
1620 |
+
- type: cos_sim_spearman
|
1621 |
+
value: 88.44916193520294
|
1622 |
+
- type: euclidean_pearson
|
1623 |
+
value: 87.85883738567667
|
1624 |
+
- type: euclidean_spearman
|
1625 |
+
value: 88.44928880968476
|
1626 |
+
- type: manhattan_pearson
|
1627 |
+
value: 88.1871454451139
|
1628 |
+
- type: manhattan_spearman
|
1629 |
+
value: 88.94431200065807
|
1630 |
+
- task:
|
1631 |
+
type: STS
|
1632 |
+
dataset:
|
1633 |
+
type: mteb/sts16-sts
|
1634 |
+
name: MTEB STS16
|
1635 |
+
config: default
|
1636 |
+
split: test
|
1637 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
1638 |
+
metrics:
|
1639 |
+
- type: cos_sim_pearson
|
1640 |
+
value: 85.36716703986853
|
1641 |
+
- type: cos_sim_spearman
|
1642 |
+
value: 86.16132844716138
|
1643 |
+
- type: euclidean_pearson
|
1644 |
+
value: 85.25811478217042
|
1645 |
+
- type: euclidean_spearman
|
1646 |
+
value: 86.16215262183867
|
1647 |
+
- type: manhattan_pearson
|
1648 |
+
value: 85.43281209842574
|
1649 |
+
- type: manhattan_spearman
|
1650 |
+
value: 86.44640605346511
|
1651 |
+
- task:
|
1652 |
+
type: STS
|
1653 |
+
dataset:
|
1654 |
+
type: mteb/sts17-crosslingual-sts
|
1655 |
+
name: MTEB STS17 (en-en)
|
1656 |
+
config: en-en
|
1657 |
+
split: test
|
1658 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
1659 |
+
metrics:
|
1660 |
+
- type: cos_sim_pearson
|
1661 |
+
value: 88.29794966742152
|
1662 |
+
- type: cos_sim_spearman
|
1663 |
+
value: 88.27359278171622
|
1664 |
+
- type: euclidean_pearson
|
1665 |
+
value: 88.06469525438956
|
1666 |
+
- type: euclidean_spearman
|
1667 |
+
value: 88.28670070410784
|
1668 |
+
- type: manhattan_pearson
|
1669 |
+
value: 87.89087342332212
|
1670 |
+
- type: manhattan_spearman
|
1671 |
+
value: 88.11041644578535
|
1672 |
+
- task:
|
1673 |
+
type: STS
|
1674 |
+
dataset:
|
1675 |
+
type: mteb/sts22-crosslingual-sts
|
1676 |
+
name: MTEB STS22 (en)
|
1677 |
+
config: en
|
1678 |
+
split: test
|
1679 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
1680 |
+
metrics:
|
1681 |
+
- type: cos_sim_pearson
|
1682 |
+
value: 66.75199645389645
|
1683 |
+
- type: cos_sim_spearman
|
1684 |
+
value: 66.20137384486978
|
1685 |
+
- type: euclidean_pearson
|
1686 |
+
value: 68.622513186352
|
1687 |
+
- type: euclidean_spearman
|
1688 |
+
value: 66.23640152769464
|
1689 |
+
- type: manhattan_pearson
|
1690 |
+
value: 68.97988448341921
|
1691 |
+
- type: manhattan_spearman
|
1692 |
+
value: 66.39142269154794
|
1693 |
+
- task:
|
1694 |
+
type: STS
|
1695 |
+
dataset:
|
1696 |
+
type: mteb/stsbenchmark-sts
|
1697 |
+
name: MTEB STSBenchmark
|
1698 |
+
config: default
|
1699 |
+
split: test
|
1700 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
1701 |
+
metrics:
|
1702 |
+
- type: cos_sim_pearson
|
1703 |
+
value: 86.48693548775047
|
1704 |
+
- type: cos_sim_spearman
|
1705 |
+
value: 86.08823308674964
|
1706 |
+
- type: euclidean_pearson
|
1707 |
+
value: 85.65692420470154
|
1708 |
+
- type: euclidean_spearman
|
1709 |
+
value: 86.08859480677167
|
1710 |
+
- type: manhattan_pearson
|
1711 |
+
value: 85.90164709250936
|
1712 |
+
- type: manhattan_spearman
|
1713 |
+
value: 86.40785365360473
|
1714 |
+
- task:
|
1715 |
+
type: Reranking
|
1716 |
+
dataset:
|
1717 |
+
type: mteb/scidocs-reranking
|
1718 |
+
name: MTEB SciDocsRR
|
1719 |
+
config: default
|
1720 |
+
split: test
|
1721 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
1722 |
+
metrics:
|
1723 |
+
- type: map
|
1724 |
+
value: 88.80093449044475
|
1725 |
+
- type: mrr
|
1726 |
+
value: 97.02094655526028
|
1727 |
+
- task:
|
1728 |
+
type: Retrieval
|
1729 |
+
dataset:
|
1730 |
+
type: mteb/scifact
|
1731 |
+
name: MTEB SciFact
|
1732 |
+
config: default
|
1733 |
+
split: test
|
1734 |
+
revision: 0228b52cf27578f30900b9e5271d331663a030d7
|
1735 |
+
metrics:
|
1736 |
+
- type: map_at_1
|
1737 |
+
value: 59.594
|
1738 |
+
- type: map_at_10
|
1739 |
+
value: 72.649
|
1740 |
+
- type: map_at_100
|
1741 |
+
value: 73.051
|
1742 |
+
- type: map_at_1000
|
1743 |
+
value: 73.056
|
1744 |
+
- type: map_at_3
|
1745 |
+
value: 69.667
|
1746 |
+
- type: map_at_5
|
1747 |
+
value: 71.528
|
1748 |
+
- type: mrr_at_1
|
1749 |
+
value: 62.666999999999994
|
1750 |
+
- type: mrr_at_10
|
1751 |
+
value: 73.625
|
1752 |
+
- type: mrr_at_100
|
1753 |
+
value: 73.956
|
1754 |
+
- type: mrr_at_1000
|
1755 |
+
value: 73.962
|
1756 |
+
- type: mrr_at_3
|
1757 |
+
value: 71.77799999999999
|
1758 |
+
- type: mrr_at_5
|
1759 |
+
value: 72.994
|
1760 |
+
- type: ndcg_at_1
|
1761 |
+
value: 62.666999999999994
|
1762 |
+
- type: ndcg_at_10
|
1763 |
+
value: 77.981
|
1764 |
+
- type: ndcg_at_100
|
1765 |
+
value: 79.474
|
1766 |
+
- type: ndcg_at_1000
|
1767 |
+
value: 79.569
|
1768 |
+
- type: ndcg_at_3
|
1769 |
+
value: 73.4
|
1770 |
+
- type: ndcg_at_5
|
1771 |
+
value: 75.806
|
1772 |
+
- type: precision_at_1
|
1773 |
+
value: 62.666999999999994
|
1774 |
+
- type: precision_at_10
|
1775 |
+
value: 10.567
|
1776 |
+
- type: precision_at_100
|
1777 |
+
value: 1.123
|
1778 |
+
- type: precision_at_1000
|
1779 |
+
value: 0.11299999999999999
|
1780 |
+
- type: precision_at_3
|
1781 |
+
value: 29.555999999999997
|
1782 |
+
- type: precision_at_5
|
1783 |
+
value: 19.467000000000002
|
1784 |
+
- type: recall_at_1
|
1785 |
+
value: 59.594
|
1786 |
+
- type: recall_at_10
|
1787 |
+
value: 93.167
|
1788 |
+
- type: recall_at_100
|
1789 |
+
value: 99.333
|
1790 |
+
- type: recall_at_1000
|
1791 |
+
value: 100.0
|
1792 |
+
- type: recall_at_3
|
1793 |
+
value: 80.72200000000001
|
1794 |
+
- type: recall_at_5
|
1795 |
+
value: 86.79400000000001
|
1796 |
+
- task:
|
1797 |
+
type: PairClassification
|
1798 |
+
dataset:
|
1799 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
1800 |
+
name: MTEB SprintDuplicateQuestions
|
1801 |
+
config: default
|
1802 |
+
split: test
|
1803 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
1804 |
+
metrics:
|
1805 |
+
- type: cos_sim_accuracy
|
1806 |
+
value: 99.67920792079208
|
1807 |
+
- type: cos_sim_ap
|
1808 |
+
value: 91.12451155203843
|
1809 |
+
- type: cos_sim_f1
|
1810 |
+
value: 82.7763496143959
|
1811 |
+
- type: cos_sim_precision
|
1812 |
+
value: 85.18518518518519
|
1813 |
+
- type: cos_sim_recall
|
1814 |
+
value: 80.5
|
1815 |
+
- type: dot_accuracy
|
1816 |
+
value: 99.68019801980198
|
1817 |
+
- type: dot_ap
|
1818 |
+
value: 91.12360077338997
|
1819 |
+
- type: dot_f1
|
1820 |
+
value: 82.81893004115227
|
1821 |
+
- type: dot_precision
|
1822 |
+
value: 85.27542372881356
|
1823 |
+
- type: dot_recall
|
1824 |
+
value: 80.5
|
1825 |
+
- type: euclidean_accuracy
|
1826 |
+
value: 99.67920792079208
|
1827 |
+
- type: euclidean_ap
|
1828 |
+
value: 91.12526537243333
|
1829 |
+
- type: euclidean_f1
|
1830 |
+
value: 82.7763496143959
|
1831 |
+
- type: euclidean_precision
|
1832 |
+
value: 85.18518518518519
|
1833 |
+
- type: euclidean_recall
|
1834 |
+
value: 80.5
|
1835 |
+
- type: manhattan_accuracy
|
1836 |
+
value: 99.68613861386139
|
1837 |
+
- type: manhattan_ap
|
1838 |
+
value: 91.52045550487428
|
1839 |
+
- type: manhattan_f1
|
1840 |
+
value: 83.38461538461539
|
1841 |
+
- type: manhattan_precision
|
1842 |
+
value: 85.57894736842105
|
1843 |
+
- type: manhattan_recall
|
1844 |
+
value: 81.3
|
1845 |
+
- type: max_accuracy
|
1846 |
+
value: 99.68613861386139
|
1847 |
+
- type: max_ap
|
1848 |
+
value: 91.52045550487428
|
1849 |
+
- type: max_f1
|
1850 |
+
value: 83.38461538461539
|
1851 |
+
- task:
|
1852 |
+
type: Clustering
|
1853 |
+
dataset:
|
1854 |
+
type: mteb/stackexchange-clustering
|
1855 |
+
name: MTEB StackExchangeClustering
|
1856 |
+
config: default
|
1857 |
+
split: test
|
1858 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
1859 |
+
metrics:
|
1860 |
+
- type: v_measure
|
1861 |
+
value: 79.90649023801956
|
1862 |
+
- task:
|
1863 |
+
type: Clustering
|
1864 |
+
dataset:
|
1865 |
+
type: mteb/stackexchange-clustering-p2p
|
1866 |
+
name: MTEB StackExchangeClusteringP2P
|
1867 |
+
config: default
|
1868 |
+
split: test
|
1869 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
1870 |
+
metrics:
|
1871 |
+
- type: v_measure
|
1872 |
+
value: 49.681864218959205
|
1873 |
+
- task:
|
1874 |
+
type: Reranking
|
1875 |
+
dataset:
|
1876 |
+
type: mteb/stackoverflowdupquestions-reranking
|
1877 |
+
name: MTEB StackOverflowDupQuestions
|
1878 |
+
config: default
|
1879 |
+
split: test
|
1880 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
1881 |
+
metrics:
|
1882 |
+
- type: map
|
1883 |
+
value: 55.89272881949486
|
1884 |
+
- type: mrr
|
1885 |
+
value: 56.88128660555132
|
1886 |
+
- task:
|
1887 |
+
type: Summarization
|
1888 |
+
dataset:
|
1889 |
+
type: mteb/summeval
|
1890 |
+
name: MTEB SummEval
|
1891 |
+
config: default
|
1892 |
+
split: test
|
1893 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
1894 |
+
metrics:
|
1895 |
+
- type: cos_sim_pearson
|
1896 |
+
value: 31.945233723225954
|
1897 |
+
- type: cos_sim_spearman
|
1898 |
+
value: 31.361651389713284
|
1899 |
+
- type: dot_pearson
|
1900 |
+
value: 31.96193321438737
|
1901 |
+
- type: dot_spearman
|
1902 |
+
value: 31.37045148053791
|
1903 |
+
- task:
|
1904 |
+
type: Retrieval
|
1905 |
+
dataset:
|
1906 |
+
type: mteb/trec-covid
|
1907 |
+
name: MTEB TRECCOVID
|
1908 |
+
config: default
|
1909 |
+
split: test
|
1910 |
+
revision: None
|
1911 |
+
metrics:
|
1912 |
+
- type: map_at_1
|
1913 |
+
value: 0.244
|
1914 |
+
- type: map_at_10
|
1915 |
+
value: 2.011
|
1916 |
+
- type: map_at_100
|
1917 |
+
value: 12.555
|
1918 |
+
- type: map_at_1000
|
1919 |
+
value: 30.386000000000003
|
1920 |
+
- type: map_at_3
|
1921 |
+
value: 0.718
|
1922 |
+
- type: map_at_5
|
1923 |
+
value: 1.118
|
1924 |
+
- type: mrr_at_1
|
1925 |
+
value: 94.0
|
1926 |
+
- type: mrr_at_10
|
1927 |
+
value: 97.0
|
1928 |
+
- type: mrr_at_100
|
1929 |
+
value: 97.0
|
1930 |
+
- type: mrr_at_1000
|
1931 |
+
value: 97.0
|
1932 |
+
- type: mrr_at_3
|
1933 |
+
value: 97.0
|
1934 |
+
- type: mrr_at_5
|
1935 |
+
value: 97.0
|
1936 |
+
- type: ndcg_at_1
|
1937 |
+
value: 93.0
|
1938 |
+
- type: ndcg_at_10
|
1939 |
+
value: 81.612
|
1940 |
+
- type: ndcg_at_100
|
1941 |
+
value: 63.468
|
1942 |
+
- type: ndcg_at_1000
|
1943 |
+
value: 56.508
|
1944 |
+
- type: ndcg_at_3
|
1945 |
+
value: 88.81599999999999
|
1946 |
+
- type: ndcg_at_5
|
1947 |
+
value: 85.599
|
1948 |
+
- type: precision_at_1
|
1949 |
+
value: 94.0
|
1950 |
+
- type: precision_at_10
|
1951 |
+
value: 84.0
|
1952 |
+
- type: precision_at_100
|
1953 |
+
value: 65.18
|
1954 |
+
- type: precision_at_1000
|
1955 |
+
value: 24.758
|
1956 |
+
- type: precision_at_3
|
1957 |
+
value: 93.333
|
1958 |
+
- type: precision_at_5
|
1959 |
+
value: 89.2
|
1960 |
+
- type: recall_at_1
|
1961 |
+
value: 0.244
|
1962 |
+
- type: recall_at_10
|
1963 |
+
value: 2.161
|
1964 |
+
- type: recall_at_100
|
1965 |
+
value: 15.862000000000002
|
1966 |
+
- type: recall_at_1000
|
1967 |
+
value: 53.146
|
1968 |
+
- type: recall_at_3
|
1969 |
+
value: 0.738
|
1970 |
+
- type: recall_at_5
|
1971 |
+
value: 1.167
|
1972 |
+
- task:
|
1973 |
+
type: Classification
|
1974 |
+
dataset:
|
1975 |
+
type: mteb/toxic_conversations_50k
|
1976 |
+
name: MTEB ToxicConversationsClassification
|
1977 |
+
config: default
|
1978 |
+
split: test
|
1979 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
1980 |
+
metrics:
|
1981 |
+
- type: accuracy
|
1982 |
+
value: 82.948
|
1983 |
+
- type: ap
|
1984 |
+
value: 26.37282466987438
|
1985 |
+
- type: f1
|
1986 |
+
value: 66.9868680256644
|
1987 |
+
- task:
|
1988 |
+
type: Classification
|
1989 |
+
dataset:
|
1990 |
+
type: mteb/tweet_sentiment_extraction
|
1991 |
+
name: MTEB TweetSentimentExtractionClassification
|
1992 |
+
config: default
|
1993 |
+
split: test
|
1994 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
1995 |
+
metrics:
|
1996 |
+
- type: accuracy
|
1997 |
+
value: 73.78607809847199
|
1998 |
+
- type: f1
|
1999 |
+
value: 74.1324659804999
|
2000 |
+
- task:
|
2001 |
+
type: Clustering
|
2002 |
+
dataset:
|
2003 |
+
type: mteb/twentynewsgroups-clustering
|
2004 |
+
name: MTEB TwentyNewsgroupsClustering
|
2005 |
+
config: default
|
2006 |
+
split: test
|
2007 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2008 |
+
metrics:
|
2009 |
+
- type: v_measure
|
2010 |
+
value: 54.11838832136805
|
2011 |
+
- task:
|
2012 |
+
type: PairClassification
|
2013 |
+
dataset:
|
2014 |
+
type: mteb/twittersemeval2015-pairclassification
|
2015 |
+
name: MTEB TwitterSemEval2015
|
2016 |
+
config: default
|
2017 |
+
split: test
|
2018 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2019 |
+
metrics:
|
2020 |
+
- type: cos_sim_accuracy
|
2021 |
+
value: 87.64975859808071
|
2022 |
+
- type: cos_sim_ap
|
2023 |
+
value: 79.0918389936708
|
2024 |
+
- type: cos_sim_f1
|
2025 |
+
value: 72.18518052585232
|
2026 |
+
- type: cos_sim_precision
|
2027 |
+
value: 68.98292858860303
|
2028 |
+
- type: cos_sim_recall
|
2029 |
+
value: 75.69920844327177
|
2030 |
+
- type: dot_accuracy
|
2031 |
+
value: 87.64379805686356
|
2032 |
+
- type: dot_ap
|
2033 |
+
value: 79.09373814934631
|
2034 |
+
- type: dot_f1
|
2035 |
+
value: 72.18216318785579
|
2036 |
+
- type: dot_precision
|
2037 |
+
value: 69.33171324422844
|
2038 |
+
- type: dot_recall
|
2039 |
+
value: 75.27704485488127
|
2040 |
+
- type: euclidean_accuracy
|
2041 |
+
value: 87.64975859808071
|
2042 |
+
- type: euclidean_ap
|
2043 |
+
value: 79.09199976607417
|
2044 |
+
- type: euclidean_f1
|
2045 |
+
value: 72.17610062893083
|
2046 |
+
- type: euclidean_precision
|
2047 |
+
value: 68.96634615384616
|
2048 |
+
- type: euclidean_recall
|
2049 |
+
value: 75.69920844327177
|
2050 |
+
- type: manhattan_accuracy
|
2051 |
+
value: 87.61399535077786
|
2052 |
+
- type: manhattan_ap
|
2053 |
+
value: 78.91167634954901
|
2054 |
+
- type: manhattan_f1
|
2055 |
+
value: 72.0995176440721
|
2056 |
+
- type: manhattan_precision
|
2057 |
+
value: 69.47162426614481
|
2058 |
+
- type: manhattan_recall
|
2059 |
+
value: 74.93403693931398
|
2060 |
+
- type: max_accuracy
|
2061 |
+
value: 87.64975859808071
|
2062 |
+
- type: max_ap
|
2063 |
+
value: 79.09373814934631
|
2064 |
+
- type: max_f1
|
2065 |
+
value: 72.18518052585232
|
2066 |
+
- task:
|
2067 |
+
type: PairClassification
|
2068 |
+
dataset:
|
2069 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2070 |
+
name: MTEB TwitterURLCorpus
|
2071 |
+
config: default
|
2072 |
+
split: test
|
2073 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2074 |
+
metrics:
|
2075 |
+
- type: cos_sim_accuracy
|
2076 |
+
value: 89.43415997205729
|
2077 |
+
- type: cos_sim_ap
|
2078 |
+
value: 86.69200523144308
|
2079 |
+
- type: cos_sim_f1
|
2080 |
+
value: 79.16424418604652
|
2081 |
+
- type: cos_sim_precision
|
2082 |
+
value: 74.95871180842279
|
2083 |
+
- type: cos_sim_recall
|
2084 |
+
value: 83.86972590083154
|
2085 |
+
- type: dot_accuracy
|
2086 |
+
value: 89.43415997205729
|
2087 |
+
- type: dot_ap
|
2088 |
+
value: 86.69346224233253
|
2089 |
+
- type: dot_f1
|
2090 |
+
value: 79.15884340968833
|
2091 |
+
- type: dot_precision
|
2092 |
+
value: 77.26139862190294
|
2093 |
+
- type: dot_recall
|
2094 |
+
value: 81.15183246073299
|
2095 |
+
- type: euclidean_accuracy
|
2096 |
+
value: 89.43221950556915
|
2097 |
+
- type: euclidean_ap
|
2098 |
+
value: 86.69176407206174
|
2099 |
+
- type: euclidean_f1
|
2100 |
+
value: 79.16409231328366
|
2101 |
+
- type: euclidean_precision
|
2102 |
+
value: 74.97074413161698
|
2103 |
+
- type: euclidean_recall
|
2104 |
+
value: 83.85432707114259
|
2105 |
+
- type: manhattan_accuracy
|
2106 |
+
value: 89.49237396670159
|
2107 |
+
- type: manhattan_ap
|
2108 |
+
value: 86.72274876446832
|
2109 |
+
- type: manhattan_f1
|
2110 |
+
value: 79.18286510672633
|
2111 |
+
- type: manhattan_precision
|
2112 |
+
value: 75.6058271466592
|
2113 |
+
- type: manhattan_recall
|
2114 |
+
value: 83.1151832460733
|
2115 |
+
- type: max_accuracy
|
2116 |
+
value: 89.49237396670159
|
2117 |
+
- type: max_ap
|
2118 |
+
value: 86.72274876446832
|
2119 |
+
- type: max_f1
|
2120 |
+
value: 79.18286510672633
|
2121 |
+
- task:
|
2122 |
+
type: STS
|
2123 |
+
dataset:
|
2124 |
+
type: C-MTEB/AFQMC
|
2125 |
+
name: MTEB AFQMC
|
2126 |
+
config: default
|
2127 |
+
split: validation
|
2128 |
+
revision: b44c3b011063adb25877c13823db83bb193913c4
|
2129 |
+
metrics:
|
2130 |
+
- type: cos_sim_pearson
|
2131 |
+
value: 65.7103214280117
|
2132 |
+
- type: cos_sim_spearman
|
2133 |
+
value: 72.62249544256886
|
2134 |
+
- type: euclidean_pearson
|
2135 |
+
value: 71.36812167041296
|
2136 |
+
- type: euclidean_spearman
|
2137 |
+
value: 72.62325941111307
|
2138 |
+
- type: manhattan_pearson
|
2139 |
+
value: 71.25613851615468
|
2140 |
+
- type: manhattan_spearman
|
2141 |
+
value: 72.54244015155267
|
2142 |
+
- task:
|
2143 |
+
type: STS
|
2144 |
+
dataset:
|
2145 |
+
type: C-MTEB/ATEC
|
2146 |
+
name: MTEB ATEC
|
2147 |
+
config: default
|
2148 |
+
split: test
|
2149 |
+
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
2150 |
+
metrics:
|
2151 |
+
- type: cos_sim_pearson
|
2152 |
+
value: 59.903467713912974
|
2153 |
+
- type: cos_sim_spearman
|
2154 |
+
value: 62.8205444560593
|
2155 |
+
- type: euclidean_pearson
|
2156 |
+
value: 67.06329904158285
|
2157 |
+
- type: euclidean_spearman
|
2158 |
+
value: 62.82051743557576
|
2159 |
+
- type: manhattan_pearson
|
2160 |
+
value: 66.97943759454319
|
2161 |
+
- type: manhattan_spearman
|
2162 |
+
value: 62.763028353169325
|
2163 |
+
- task:
|
2164 |
+
type: Classification
|
2165 |
+
dataset:
|
2166 |
+
type: mteb/amazon_reviews_multi
|
2167 |
+
name: MTEB AmazonReviewsClassification (zh)
|
2168 |
+
config: zh
|
2169 |
+
split: test
|
2170 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
2171 |
+
metrics:
|
2172 |
+
- type: accuracy
|
2173 |
+
value: 53.57399999999999
|
2174 |
+
- type: f1
|
2175 |
+
value: 50.57496370390049
|
2176 |
+
- task:
|
2177 |
+
type: STS
|
2178 |
+
dataset:
|
2179 |
+
type: C-MTEB/BQ
|
2180 |
+
name: MTEB BQ
|
2181 |
+
config: default
|
2182 |
+
split: test
|
2183 |
+
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
2184 |
+
metrics:
|
2185 |
+
- type: cos_sim_pearson
|
2186 |
+
value: 79.09488668095824
|
2187 |
+
- type: cos_sim_spearman
|
2188 |
+
value: 81.34731850197655
|
2189 |
+
- type: euclidean_pearson
|
2190 |
+
value: 82.19030116395511
|
2191 |
+
- type: euclidean_spearman
|
2192 |
+
value: 81.34699287691117
|
2193 |
+
- type: manhattan_pearson
|
2194 |
+
value: 82.19510202220734
|
2195 |
+
- type: manhattan_spearman
|
2196 |
+
value: 81.35888167395795
|
2197 |
+
- task:
|
2198 |
+
type: Clustering
|
2199 |
+
dataset:
|
2200 |
+
type: C-MTEB/CLSClusteringP2P
|
2201 |
+
name: MTEB CLSClusteringP2P
|
2202 |
+
config: default
|
2203 |
+
split: test
|
2204 |
+
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
2205 |
+
metrics:
|
2206 |
+
- type: v_measure
|
2207 |
+
value: 48.60079470735067
|
2208 |
+
- task:
|
2209 |
+
type: Clustering
|
2210 |
+
dataset:
|
2211 |
+
type: C-MTEB/CLSClusteringS2S
|
2212 |
+
name: MTEB CLSClusteringS2S
|
2213 |
+
config: default
|
2214 |
+
split: test
|
2215 |
+
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
2216 |
+
metrics:
|
2217 |
+
- type: v_measure
|
2218 |
+
value: 46.125672623152155
|
2219 |
+
- task:
|
2220 |
+
type: Reranking
|
2221 |
+
dataset:
|
2222 |
+
type: C-MTEB/CMedQAv1-reranking
|
2223 |
+
name: MTEB CMedQAv1
|
2224 |
+
config: default
|
2225 |
+
split: test
|
2226 |
+
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
2227 |
+
metrics:
|
2228 |
+
- type: map
|
2229 |
+
value: 88.0714642862605
|
2230 |
+
- type: mrr
|
2231 |
+
value: 90.17428571428572
|
2232 |
+
- task:
|
2233 |
+
type: Reranking
|
2234 |
+
dataset:
|
2235 |
+
type: C-MTEB/CMedQAv2-reranking
|
2236 |
+
name: MTEB CMedQAv2
|
2237 |
+
config: default
|
2238 |
+
split: test
|
2239 |
+
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
2240 |
+
metrics:
|
2241 |
+
- type: map
|
2242 |
+
value: 88.51263170426526
|
2243 |
+
- type: mrr
|
2244 |
+
value: 90.53325396825396
|
2245 |
+
- task:
|
2246 |
+
type: Retrieval
|
2247 |
+
dataset:
|
2248 |
+
type: C-MTEB/CmedqaRetrieval
|
2249 |
+
name: MTEB CmedqaRetrieval
|
2250 |
+
config: default
|
2251 |
+
split: dev
|
2252 |
+
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
2253 |
+
metrics:
|
2254 |
+
- type: map_at_1
|
2255 |
+
value: 29.610999999999997
|
2256 |
+
- type: map_at_10
|
2257 |
+
value: 42.832
|
2258 |
+
- type: map_at_100
|
2259 |
+
value: 44.639
|
2260 |
+
- type: map_at_1000
|
2261 |
+
value: 44.738
|
2262 |
+
- type: map_at_3
|
2263 |
+
value: 38.549
|
2264 |
+
- type: map_at_5
|
2265 |
+
value: 40.905
|
2266 |
+
- type: mrr_at_1
|
2267 |
+
value: 44.461
|
2268 |
+
- type: mrr_at_10
|
2269 |
+
value: 52.274
|
2270 |
+
- type: mrr_at_100
|
2271 |
+
value: 53.179
|
2272 |
+
- type: mrr_at_1000
|
2273 |
+
value: 53.213
|
2274 |
+
- type: mrr_at_3
|
2275 |
+
value: 49.917
|
2276 |
+
- type: mrr_at_5
|
2277 |
+
value: 51.13799999999999
|
2278 |
+
- type: ndcg_at_1
|
2279 |
+
value: 44.461
|
2280 |
+
- type: ndcg_at_10
|
2281 |
+
value: 49.557
|
2282 |
+
- type: ndcg_at_100
|
2283 |
+
value: 56.432
|
2284 |
+
- type: ndcg_at_1000
|
2285 |
+
value: 58.050000000000004
|
2286 |
+
- type: ndcg_at_3
|
2287 |
+
value: 44.419
|
2288 |
+
- type: ndcg_at_5
|
2289 |
+
value: 46.386
|
2290 |
+
- type: precision_at_1
|
2291 |
+
value: 44.461
|
2292 |
+
- type: precision_at_10
|
2293 |
+
value: 10.673
|
2294 |
+
- type: precision_at_100
|
2295 |
+
value: 1.6310000000000002
|
2296 |
+
- type: precision_at_1000
|
2297 |
+
value: 0.184
|
2298 |
+
- type: precision_at_3
|
2299 |
+
value: 24.656
|
2300 |
+
- type: precision_at_5
|
2301 |
+
value: 17.619
|
2302 |
+
- type: recall_at_1
|
2303 |
+
value: 29.610999999999997
|
2304 |
+
- type: recall_at_10
|
2305 |
+
value: 60.112
|
2306 |
+
- type: recall_at_100
|
2307 |
+
value: 88.346
|
2308 |
+
- type: recall_at_1000
|
2309 |
+
value: 98.993
|
2310 |
+
- type: recall_at_3
|
2311 |
+
value: 44.243
|
2312 |
+
- type: recall_at_5
|
2313 |
+
value: 50.64300000000001
|
2314 |
+
- task:
|
2315 |
+
type: PairClassification
|
2316 |
+
dataset:
|
2317 |
+
type: C-MTEB/CMNLI
|
2318 |
+
name: MTEB Cmnli
|
2319 |
+
config: default
|
2320 |
+
split: validation
|
2321 |
+
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
2322 |
+
metrics:
|
2323 |
+
- type: cos_sim_accuracy
|
2324 |
+
value: 82.17678893565845
|
2325 |
+
- type: cos_sim_ap
|
2326 |
+
value: 89.77899888165327
|
2327 |
+
- type: cos_sim_f1
|
2328 |
+
value: 83.03306727480046
|
2329 |
+
- type: cos_sim_precision
|
2330 |
+
value: 81.0371689294458
|
2331 |
+
- type: cos_sim_recall
|
2332 |
+
value: 85.1297638531681
|
2333 |
+
- type: dot_accuracy
|
2334 |
+
value: 82.1647624774504
|
2335 |
+
- type: dot_ap
|
2336 |
+
value: 89.78074283382892
|
2337 |
+
- type: dot_f1
|
2338 |
+
value: 83.03306727480046
|
2339 |
+
- type: dot_precision
|
2340 |
+
value: 81.0371689294458
|
2341 |
+
- type: dot_recall
|
2342 |
+
value: 85.1297638531681
|
2343 |
+
- type: euclidean_accuracy
|
2344 |
+
value: 82.1888153938665
|
2345 |
+
- type: euclidean_ap
|
2346 |
+
value: 89.77917362529757
|
2347 |
+
- type: euclidean_f1
|
2348 |
+
value: 83.03306727480046
|
2349 |
+
- type: euclidean_precision
|
2350 |
+
value: 81.0371689294458
|
2351 |
+
- type: euclidean_recall
|
2352 |
+
value: 85.1297638531681
|
2353 |
+
- type: manhattan_accuracy
|
2354 |
+
value: 81.82802164762477
|
2355 |
+
- type: manhattan_ap
|
2356 |
+
value: 89.56708721584408
|
2357 |
+
- type: manhattan_f1
|
2358 |
+
value: 82.72179938657275
|
2359 |
+
- type: manhattan_precision
|
2360 |
+
value: 80.44631020768891
|
2361 |
+
- type: manhattan_recall
|
2362 |
+
value: 85.1297638531681
|
2363 |
+
- type: max_accuracy
|
2364 |
+
value: 82.1888153938665
|
2365 |
+
- type: max_ap
|
2366 |
+
value: 89.78074283382892
|
2367 |
+
- type: max_f1
|
2368 |
+
value: 83.03306727480046
|
2369 |
+
- task:
|
2370 |
+
type: Retrieval
|
2371 |
+
dataset:
|
2372 |
+
type: C-MTEB/CovidRetrieval
|
2373 |
+
name: MTEB CovidRetrieval
|
2374 |
+
config: default
|
2375 |
+
split: dev
|
2376 |
+
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
2377 |
+
metrics:
|
2378 |
+
- type: map_at_1
|
2379 |
+
value: 66.807
|
2380 |
+
- type: map_at_10
|
2381 |
+
value: 75.47399999999999
|
2382 |
+
- type: map_at_100
|
2383 |
+
value: 75.837
|
2384 |
+
- type: map_at_1000
|
2385 |
+
value: 75.84
|
2386 |
+
- type: map_at_3
|
2387 |
+
value: 73.67399999999999
|
2388 |
+
- type: map_at_5
|
2389 |
+
value: 74.558
|
2390 |
+
- type: mrr_at_1
|
2391 |
+
value: 66.913
|
2392 |
+
- type: mrr_at_10
|
2393 |
+
value: 75.467
|
2394 |
+
- type: mrr_at_100
|
2395 |
+
value: 75.823
|
2396 |
+
- type: mrr_at_1000
|
2397 |
+
value: 75.82600000000001
|
2398 |
+
- type: mrr_at_3
|
2399 |
+
value: 73.67399999999999
|
2400 |
+
- type: mrr_at_5
|
2401 |
+
value: 74.586
|
2402 |
+
- type: ndcg_at_1
|
2403 |
+
value: 66.913
|
2404 |
+
- type: ndcg_at_10
|
2405 |
+
value: 79.591
|
2406 |
+
- type: ndcg_at_100
|
2407 |
+
value: 81.15
|
2408 |
+
- type: ndcg_at_1000
|
2409 |
+
value: 81.229
|
2410 |
+
- type: ndcg_at_3
|
2411 |
+
value: 75.83800000000001
|
2412 |
+
- type: ndcg_at_5
|
2413 |
+
value: 77.45
|
2414 |
+
- type: precision_at_1
|
2415 |
+
value: 66.913
|
2416 |
+
- type: precision_at_10
|
2417 |
+
value: 9.325999999999999
|
2418 |
+
- type: precision_at_100
|
2419 |
+
value: 1.0030000000000001
|
2420 |
+
- type: precision_at_1000
|
2421 |
+
value: 0.101
|
2422 |
+
- type: precision_at_3
|
2423 |
+
value: 27.432000000000002
|
2424 |
+
- type: precision_at_5
|
2425 |
+
value: 17.281
|
2426 |
+
- type: recall_at_1
|
2427 |
+
value: 66.807
|
2428 |
+
- type: recall_at_10
|
2429 |
+
value: 92.46600000000001
|
2430 |
+
- type: recall_at_100
|
2431 |
+
value: 99.262
|
2432 |
+
- type: recall_at_1000
|
2433 |
+
value: 99.895
|
2434 |
+
- type: recall_at_3
|
2435 |
+
value: 82.086
|
2436 |
+
- type: recall_at_5
|
2437 |
+
value: 85.985
|
2438 |
+
- task:
|
2439 |
+
type: Retrieval
|
2440 |
+
dataset:
|
2441 |
+
type: C-MTEB/DuRetrieval
|
2442 |
+
name: MTEB DuRetrieval
|
2443 |
+
config: default
|
2444 |
+
split: dev
|
2445 |
+
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
2446 |
+
metrics:
|
2447 |
+
- type: map_at_1
|
2448 |
+
value: 26.599
|
2449 |
+
- type: map_at_10
|
2450 |
+
value: 81.577
|
2451 |
+
- type: map_at_100
|
2452 |
+
value: 84.368
|
2453 |
+
- type: map_at_1000
|
2454 |
+
value: 84.39999999999999
|
2455 |
+
- type: map_at_3
|
2456 |
+
value: 56.825
|
2457 |
+
- type: map_at_5
|
2458 |
+
value: 71.462
|
2459 |
+
- type: mrr_at_1
|
2460 |
+
value: 90.5
|
2461 |
+
- type: mrr_at_10
|
2462 |
+
value: 93.798
|
2463 |
+
- type: mrr_at_100
|
2464 |
+
value: 93.851
|
2465 |
+
- type: mrr_at_1000
|
2466 |
+
value: 93.853
|
2467 |
+
- type: mrr_at_3
|
2468 |
+
value: 93.5
|
2469 |
+
- type: mrr_at_5
|
2470 |
+
value: 93.672
|
2471 |
+
- type: ndcg_at_1
|
2472 |
+
value: 90.5
|
2473 |
+
- type: ndcg_at_10
|
2474 |
+
value: 88.633
|
2475 |
+
- type: ndcg_at_100
|
2476 |
+
value: 91.217
|
2477 |
+
- type: ndcg_at_1000
|
2478 |
+
value: 91.484
|
2479 |
+
- type: ndcg_at_3
|
2480 |
+
value: 87.29599999999999
|
2481 |
+
- type: ndcg_at_5
|
2482 |
+
value: 86.31299999999999
|
2483 |
+
- type: precision_at_1
|
2484 |
+
value: 90.5
|
2485 |
+
- type: precision_at_10
|
2486 |
+
value: 42.18
|
2487 |
+
- type: precision_at_100
|
2488 |
+
value: 4.839
|
2489 |
+
- type: precision_at_1000
|
2490 |
+
value: 0.49
|
2491 |
+
- type: precision_at_3
|
2492 |
+
value: 78.133
|
2493 |
+
- type: precision_at_5
|
2494 |
+
value: 65.82000000000001
|
2495 |
+
- type: recall_at_1
|
2496 |
+
value: 26.599
|
2497 |
+
- type: recall_at_10
|
2498 |
+
value: 90.137
|
2499 |
+
- type: recall_at_100
|
2500 |
+
value: 98.393
|
2501 |
+
- type: recall_at_1000
|
2502 |
+
value: 99.747
|
2503 |
+
- type: recall_at_3
|
2504 |
+
value: 59.199999999999996
|
2505 |
+
- type: recall_at_5
|
2506 |
+
value: 76.173
|
2507 |
+
- task:
|
2508 |
+
type: Retrieval
|
2509 |
+
dataset:
|
2510 |
+
type: C-MTEB/EcomRetrieval
|
2511 |
+
name: MTEB EcomRetrieval
|
2512 |
+
config: default
|
2513 |
+
split: dev
|
2514 |
+
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
2515 |
+
metrics:
|
2516 |
+
- type: map_at_1
|
2517 |
+
value: 55.2
|
2518 |
+
- type: map_at_10
|
2519 |
+
value: 64.925
|
2520 |
+
- type: map_at_100
|
2521 |
+
value: 65.446
|
2522 |
+
- type: map_at_1000
|
2523 |
+
value: 65.459
|
2524 |
+
- type: map_at_3
|
2525 |
+
value: 62.266999999999996
|
2526 |
+
- type: map_at_5
|
2527 |
+
value: 64.107
|
2528 |
+
- type: mrr_at_1
|
2529 |
+
value: 55.2
|
2530 |
+
- type: mrr_at_10
|
2531 |
+
value: 64.925
|
2532 |
+
- type: mrr_at_100
|
2533 |
+
value: 65.446
|
2534 |
+
- type: mrr_at_1000
|
2535 |
+
value: 65.459
|
2536 |
+
- type: mrr_at_3
|
2537 |
+
value: 62.266999999999996
|
2538 |
+
- type: mrr_at_5
|
2539 |
+
value: 64.107
|
2540 |
+
- type: ndcg_at_1
|
2541 |
+
value: 55.2
|
2542 |
+
- type: ndcg_at_10
|
2543 |
+
value: 69.85900000000001
|
2544 |
+
- type: ndcg_at_100
|
2545 |
+
value: 72.194
|
2546 |
+
- type: ndcg_at_1000
|
2547 |
+
value: 72.506
|
2548 |
+
- type: ndcg_at_3
|
2549 |
+
value: 64.538
|
2550 |
+
- type: ndcg_at_5
|
2551 |
+
value: 67.843
|
2552 |
+
- type: precision_at_1
|
2553 |
+
value: 55.2
|
2554 |
+
- type: precision_at_10
|
2555 |
+
value: 8.540000000000001
|
2556 |
+
- type: precision_at_100
|
2557 |
+
value: 0.959
|
2558 |
+
- type: precision_at_1000
|
2559 |
+
value: 0.098
|
2560 |
+
- type: precision_at_3
|
2561 |
+
value: 23.7
|
2562 |
+
- type: precision_at_5
|
2563 |
+
value: 15.82
|
2564 |
+
- type: recall_at_1
|
2565 |
+
value: 55.2
|
2566 |
+
- type: recall_at_10
|
2567 |
+
value: 85.39999999999999
|
2568 |
+
- type: recall_at_100
|
2569 |
+
value: 95.89999999999999
|
2570 |
+
- type: recall_at_1000
|
2571 |
+
value: 98.3
|
2572 |
+
- type: recall_at_3
|
2573 |
+
value: 71.1
|
2574 |
+
- type: recall_at_5
|
2575 |
+
value: 79.10000000000001
|
2576 |
+
- task:
|
2577 |
+
type: Classification
|
2578 |
+
dataset:
|
2579 |
+
type: C-MTEB/IFlyTek-classification
|
2580 |
+
name: MTEB IFlyTek
|
2581 |
+
config: default
|
2582 |
+
split: validation
|
2583 |
+
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
2584 |
+
metrics:
|
2585 |
+
- type: accuracy
|
2586 |
+
value: 53.92843401308196
|
2587 |
+
- type: f1
|
2588 |
+
value: 40.44614048360205
|
2589 |
+
- task:
|
2590 |
+
type: Classification
|
2591 |
+
dataset:
|
2592 |
+
type: C-MTEB/JDReview-classification
|
2593 |
+
name: MTEB JDReview
|
2594 |
+
config: default
|
2595 |
+
split: test
|
2596 |
+
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
|
2597 |
+
metrics:
|
2598 |
+
- type: accuracy
|
2599 |
+
value: 86.22889305816133
|
2600 |
+
- type: ap
|
2601 |
+
value: 55.542660925360835
|
2602 |
+
- type: f1
|
2603 |
+
value: 81.26964576055315
|
2604 |
+
- task:
|
2605 |
+
type: STS
|
2606 |
+
dataset:
|
2607 |
+
type: C-MTEB/LCQMC
|
2608 |
+
name: MTEB LCQMC
|
2609 |
+
config: default
|
2610 |
+
split: test
|
2611 |
+
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
2612 |
+
metrics:
|
2613 |
+
- type: cos_sim_pearson
|
2614 |
+
value: 68.50234587951512
|
2615 |
+
- type: cos_sim_spearman
|
2616 |
+
value: 73.04229322574785
|
2617 |
+
- type: euclidean_pearson
|
2618 |
+
value: 71.76475440799503
|
2619 |
+
- type: euclidean_spearman
|
2620 |
+
value: 73.04203161533454
|
2621 |
+
- type: manhattan_pearson
|
2622 |
+
value: 71.75530397681868
|
2623 |
+
- type: manhattan_spearman
|
2624 |
+
value: 73.01054099221574
|
2625 |
+
- task:
|
2626 |
+
type: Reranking
|
2627 |
+
dataset:
|
2628 |
+
type: C-MTEB/Mmarco-reranking
|
2629 |
+
name: MTEB MMarcoReranking
|
2630 |
+
config: default
|
2631 |
+
split: dev
|
2632 |
+
revision: None
|
2633 |
+
metrics:
|
2634 |
+
- type: map
|
2635 |
+
value: 22.67056873798454
|
2636 |
+
- type: mrr
|
2637 |
+
value: 21.63888888888889
|
2638 |
+
- task:
|
2639 |
+
type: Retrieval
|
2640 |
+
dataset:
|
2641 |
+
type: C-MTEB/MMarcoRetrieval
|
2642 |
+
name: MTEB MMarcoRetrieval
|
2643 |
+
config: default
|
2644 |
+
split: dev
|
2645 |
+
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
2646 |
+
metrics:
|
2647 |
+
- type: map_at_1
|
2648 |
+
value: 67.65
|
2649 |
+
- type: map_at_10
|
2650 |
+
value: 76.726
|
2651 |
+
- type: map_at_100
|
2652 |
+
value: 77.03
|
2653 |
+
- type: map_at_1000
|
2654 |
+
value: 77.042
|
2655 |
+
- type: map_at_3
|
2656 |
+
value: 74.924
|
2657 |
+
- type: map_at_5
|
2658 |
+
value: 76.08200000000001
|
2659 |
+
- type: mrr_at_1
|
2660 |
+
value: 69.87100000000001
|
2661 |
+
- type: mrr_at_10
|
2662 |
+
value: 77.238
|
2663 |
+
- type: mrr_at_100
|
2664 |
+
value: 77.492
|
2665 |
+
- type: mrr_at_1000
|
2666 |
+
value: 77.503
|
2667 |
+
- type: mrr_at_3
|
2668 |
+
value: 75.633
|
2669 |
+
- type: mrr_at_5
|
2670 |
+
value: 76.678
|
2671 |
+
- type: ndcg_at_1
|
2672 |
+
value: 69.87100000000001
|
2673 |
+
- type: ndcg_at_10
|
2674 |
+
value: 80.37100000000001
|
2675 |
+
- type: ndcg_at_100
|
2676 |
+
value: 81.658
|
2677 |
+
- type: ndcg_at_1000
|
2678 |
+
value: 81.94200000000001
|
2679 |
+
- type: ndcg_at_3
|
2680 |
+
value: 76.94
|
2681 |
+
- type: ndcg_at_5
|
2682 |
+
value: 78.926
|
2683 |
+
- type: precision_at_1
|
2684 |
+
value: 69.87100000000001
|
2685 |
+
- type: precision_at_10
|
2686 |
+
value: 9.681
|
2687 |
+
- type: precision_at_100
|
2688 |
+
value: 1.032
|
2689 |
+
- type: precision_at_1000
|
2690 |
+
value: 0.105
|
2691 |
+
- type: precision_at_3
|
2692 |
+
value: 28.906
|
2693 |
+
- type: precision_at_5
|
2694 |
+
value: 18.404
|
2695 |
+
- type: recall_at_1
|
2696 |
+
value: 67.65
|
2697 |
+
- type: recall_at_10
|
2698 |
+
value: 91.078
|
2699 |
+
- type: recall_at_100
|
2700 |
+
value: 96.767
|
2701 |
+
- type: recall_at_1000
|
2702 |
+
value: 98.933
|
2703 |
+
- type: recall_at_3
|
2704 |
+
value: 82.02000000000001
|
2705 |
+
- type: recall_at_5
|
2706 |
+
value: 86.771
|
2707 |
+
- task:
|
2708 |
+
type: Classification
|
2709 |
+
dataset:
|
2710 |
+
type: mteb/amazon_massive_intent
|
2711 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
2712 |
+
config: zh-CN
|
2713 |
+
split: test
|
2714 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
2715 |
+
metrics:
|
2716 |
+
- type: accuracy
|
2717 |
+
value: 79.7848016139879
|
2718 |
+
- type: f1
|
2719 |
+
value: 76.99189501152489
|
2720 |
+
- task:
|
2721 |
+
type: Classification
|
2722 |
+
dataset:
|
2723 |
+
type: mteb/amazon_massive_scenario
|
2724 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
2725 |
+
config: zh-CN
|
2726 |
+
split: test
|
2727 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
2728 |
+
metrics:
|
2729 |
+
- type: accuracy
|
2730 |
+
value: 83.64492266308001
|
2731 |
+
- type: f1
|
2732 |
+
value: 82.84955852311293
|
2733 |
+
- task:
|
2734 |
+
type: Retrieval
|
2735 |
+
dataset:
|
2736 |
+
type: C-MTEB/MedicalRetrieval
|
2737 |
+
name: MTEB MedicalRetrieval
|
2738 |
+
config: default
|
2739 |
+
split: dev
|
2740 |
+
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
2741 |
+
metrics:
|
2742 |
+
- type: map_at_1
|
2743 |
+
value: 54.400000000000006
|
2744 |
+
- type: map_at_10
|
2745 |
+
value: 60.529999999999994
|
2746 |
+
- type: map_at_100
|
2747 |
+
value: 61.114999999999995
|
2748 |
+
- type: map_at_1000
|
2749 |
+
value: 61.153999999999996
|
2750 |
+
- type: map_at_3
|
2751 |
+
value: 59.150000000000006
|
2752 |
+
- type: map_at_5
|
2753 |
+
value: 59.955000000000005
|
2754 |
+
- type: mrr_at_1
|
2755 |
+
value: 54.50000000000001
|
2756 |
+
- type: mrr_at_10
|
2757 |
+
value: 60.58
|
2758 |
+
- type: mrr_at_100
|
2759 |
+
value: 61.165000000000006
|
2760 |
+
- type: mrr_at_1000
|
2761 |
+
value: 61.204
|
2762 |
+
- type: mrr_at_3
|
2763 |
+
value: 59.199999999999996
|
2764 |
+
- type: mrr_at_5
|
2765 |
+
value: 60.004999999999995
|
2766 |
+
- type: ndcg_at_1
|
2767 |
+
value: 54.400000000000006
|
2768 |
+
- type: ndcg_at_10
|
2769 |
+
value: 63.522999999999996
|
2770 |
+
- type: ndcg_at_100
|
2771 |
+
value: 66.742
|
2772 |
+
- type: ndcg_at_1000
|
2773 |
+
value: 67.818
|
2774 |
+
- type: ndcg_at_3
|
2775 |
+
value: 60.702999999999996
|
2776 |
+
- type: ndcg_at_5
|
2777 |
+
value: 62.149
|
2778 |
+
- type: precision_at_1
|
2779 |
+
value: 54.400000000000006
|
2780 |
+
- type: precision_at_10
|
2781 |
+
value: 7.290000000000001
|
2782 |
+
- type: precision_at_100
|
2783 |
+
value: 0.8880000000000001
|
2784 |
+
- type: precision_at_1000
|
2785 |
+
value: 0.097
|
2786 |
+
- type: precision_at_3
|
2787 |
+
value: 21.733
|
2788 |
+
- type: precision_at_5
|
2789 |
+
value: 13.74
|
2790 |
+
- type: recall_at_1
|
2791 |
+
value: 54.400000000000006
|
2792 |
+
- type: recall_at_10
|
2793 |
+
value: 72.89999999999999
|
2794 |
+
- type: recall_at_100
|
2795 |
+
value: 88.8
|
2796 |
+
- type: recall_at_1000
|
2797 |
+
value: 97.39999999999999
|
2798 |
+
- type: recall_at_3
|
2799 |
+
value: 65.2
|
2800 |
+
- type: recall_at_5
|
2801 |
+
value: 68.7
|
2802 |
+
- task:
|
2803 |
+
type: Classification
|
2804 |
+
dataset:
|
2805 |
+
type: C-MTEB/MultilingualSentiment-classification
|
2806 |
+
name: MTEB MultilingualSentiment
|
2807 |
+
config: default
|
2808 |
+
split: validation
|
2809 |
+
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
2810 |
+
metrics:
|
2811 |
+
- type: accuracy
|
2812 |
+
value: 77.16000000000001
|
2813 |
+
- type: f1
|
2814 |
+
value: 76.97953105264186
|
2815 |
+
- task:
|
2816 |
+
type: PairClassification
|
2817 |
+
dataset:
|
2818 |
+
type: C-MTEB/OCNLI
|
2819 |
+
name: MTEB Ocnli
|
2820 |
+
config: default
|
2821 |
+
split: validation
|
2822 |
+
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
|
2823 |
+
metrics:
|
2824 |
+
- type: cos_sim_accuracy
|
2825 |
+
value: 79.48023822414727
|
2826 |
+
- type: cos_sim_ap
|
2827 |
+
value: 84.483894203704
|
2828 |
+
- type: cos_sim_f1
|
2829 |
+
value: 80.55130168453292
|
2830 |
+
- type: cos_sim_precision
|
2831 |
+
value: 77.96442687747036
|
2832 |
+
- type: cos_sim_recall
|
2833 |
+
value: 83.31573389651531
|
2834 |
+
- type: dot_accuracy
|
2835 |
+
value: 79.48023822414727
|
2836 |
+
- type: dot_ap
|
2837 |
+
value: 84.49261973641154
|
2838 |
+
- type: dot_f1
|
2839 |
+
value: 80.55130168453292
|
2840 |
+
- type: dot_precision
|
2841 |
+
value: 77.96442687747036
|
2842 |
+
- type: dot_recall
|
2843 |
+
value: 83.31573389651531
|
2844 |
+
- type: euclidean_accuracy
|
2845 |
+
value: 79.48023822414727
|
2846 |
+
- type: euclidean_ap
|
2847 |
+
value: 84.48068994534293
|
2848 |
+
- type: euclidean_f1
|
2849 |
+
value: 80.55130168453292
|
2850 |
+
- type: euclidean_precision
|
2851 |
+
value: 77.96442687747036
|
2852 |
+
- type: euclidean_recall
|
2853 |
+
value: 83.31573389651531
|
2854 |
+
- type: manhattan_accuracy
|
2855 |
+
value: 79.37195452084461
|
2856 |
+
- type: manhattan_ap
|
2857 |
+
value: 84.45931914984077
|
2858 |
+
- type: manhattan_f1
|
2859 |
+
value: 80.53142565150742
|
2860 |
+
- type: manhattan_precision
|
2861 |
+
value: 78.01980198019803
|
2862 |
+
- type: manhattan_recall
|
2863 |
+
value: 83.21013727560718
|
2864 |
+
- type: max_accuracy
|
2865 |
+
value: 79.48023822414727
|
2866 |
+
- type: max_ap
|
2867 |
+
value: 84.49261973641154
|
2868 |
+
- type: max_f1
|
2869 |
+
value: 80.55130168453292
|
2870 |
+
- task:
|
2871 |
+
type: Classification
|
2872 |
+
dataset:
|
2873 |
+
type: C-MTEB/OnlineShopping-classification
|
2874 |
+
name: MTEB OnlineShopping
|
2875 |
+
config: default
|
2876 |
+
split: test
|
2877 |
+
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
2878 |
+
metrics:
|
2879 |
+
- type: accuracy
|
2880 |
+
value: 94.3
|
2881 |
+
- type: ap
|
2882 |
+
value: 92.84324255663363
|
2883 |
+
- type: f1
|
2884 |
+
value: 94.29275233313747
|
2885 |
+
- task:
|
2886 |
+
type: STS
|
2887 |
+
dataset:
|
2888 |
+
type: C-MTEB/PAWSX
|
2889 |
+
name: MTEB PAWSX
|
2890 |
+
config: default
|
2891 |
+
split: test
|
2892 |
+
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
2893 |
+
metrics:
|
2894 |
+
- type: cos_sim_pearson
|
2895 |
+
value: 50.25954594958544
|
2896 |
+
- type: cos_sim_spearman
|
2897 |
+
value: 55.1554675848278
|
2898 |
+
- type: euclidean_pearson
|
2899 |
+
value: 53.71113201288935
|
2900 |
+
- type: euclidean_spearman
|
2901 |
+
value: 55.1558156481826
|
2902 |
+
- type: manhattan_pearson
|
2903 |
+
value: 53.816355416293646
|
2904 |
+
- type: manhattan_spearman
|
2905 |
+
value: 55.14310001157623
|
2906 |
+
- task:
|
2907 |
+
type: STS
|
2908 |
+
dataset:
|
2909 |
+
type: C-MTEB/QBQTC
|
2910 |
+
name: MTEB QBQTC
|
2911 |
+
config: default
|
2912 |
+
split: test
|
2913 |
+
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
2914 |
+
metrics:
|
2915 |
+
- type: cos_sim_pearson
|
2916 |
+
value: 29.187751074660845
|
2917 |
+
- type: cos_sim_spearman
|
2918 |
+
value: 30.889291180505868
|
2919 |
+
- type: euclidean_pearson
|
2920 |
+
value: 28.73210543314964
|
2921 |
+
- type: euclidean_spearman
|
2922 |
+
value: 30.889662787316784
|
2923 |
+
- type: manhattan_pearson
|
2924 |
+
value: 29.21703764852649
|
2925 |
+
- type: manhattan_spearman
|
2926 |
+
value: 31.47317743982721
|
2927 |
+
- task:
|
2928 |
+
type: STS
|
2929 |
+
dataset:
|
2930 |
+
type: mteb/sts22-crosslingual-sts
|
2931 |
+
name: MTEB STS22 (zh)
|
2932 |
+
config: zh
|
2933 |
+
split: test
|
2934 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
2935 |
+
metrics:
|
2936 |
+
- type: cos_sim_pearson
|
2937 |
+
value: 61.1898272680276
|
2938 |
+
- type: cos_sim_spearman
|
2939 |
+
value: 64.93927648503598
|
2940 |
+
- type: euclidean_pearson
|
2941 |
+
value: 61.11026474293018
|
2942 |
+
- type: euclidean_spearman
|
2943 |
+
value: 64.94229072933243
|
2944 |
+
- type: manhattan_pearson
|
2945 |
+
value: 62.19814132782434
|
2946 |
+
- type: manhattan_spearman
|
2947 |
+
value: 65.2583560877569
|
2948 |
+
- task:
|
2949 |
+
type: STS
|
2950 |
+
dataset:
|
2951 |
+
type: C-MTEB/STSB
|
2952 |
+
name: MTEB STSB
|
2953 |
+
config: default
|
2954 |
+
split: test
|
2955 |
+
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
2956 |
+
metrics:
|
2957 |
+
- type: cos_sim_pearson
|
2958 |
+
value: 78.76122365246462
|
2959 |
+
- type: cos_sim_spearman
|
2960 |
+
value: 78.68211802616669
|
2961 |
+
- type: euclidean_pearson
|
2962 |
+
value: 77.17265704615994
|
2963 |
+
- type: euclidean_spearman
|
2964 |
+
value: 78.68087191872655
|
2965 |
+
- type: manhattan_pearson
|
2966 |
+
value: 77.61313585452194
|
2967 |
+
- type: manhattan_spearman
|
2968 |
+
value: 79.22153641729726
|
2969 |
+
- task:
|
2970 |
+
type: Reranking
|
2971 |
+
dataset:
|
2972 |
+
type: C-MTEB/T2Reranking
|
2973 |
+
name: MTEB T2Reranking
|
2974 |
+
config: default
|
2975 |
+
split: dev
|
2976 |
+
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
2977 |
+
metrics:
|
2978 |
+
- type: map
|
2979 |
+
value: 67.80243119237458
|
2980 |
+
- type: mrr
|
2981 |
+
value: 78.00406497512118
|
2982 |
+
- task:
|
2983 |
+
type: Retrieval
|
2984 |
+
dataset:
|
2985 |
+
type: C-MTEB/T2Retrieval
|
2986 |
+
name: MTEB T2Retrieval
|
2987 |
+
config: default
|
2988 |
+
split: dev
|
2989 |
+
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
2990 |
+
metrics:
|
2991 |
+
- type: map_at_1
|
2992 |
+
value: 28.936
|
2993 |
+
- type: map_at_10
|
2994 |
+
value: 82.256
|
2995 |
+
- type: map_at_100
|
2996 |
+
value: 85.688
|
2997 |
+
- type: map_at_1000
|
2998 |
+
value: 85.727
|
2999 |
+
- type: map_at_3
|
3000 |
+
value: 57.655
|
3001 |
+
- type: map_at_5
|
3002 |
+
value: 71.05
|
3003 |
+
- type: mrr_at_1
|
3004 |
+
value: 92.548
|
3005 |
+
- type: mrr_at_10
|
3006 |
+
value: 94.586
|
3007 |
+
- type: mrr_at_100
|
3008 |
+
value: 94.64399999999999
|
3009 |
+
- type: mrr_at_1000
|
3010 |
+
value: 94.646
|
3011 |
+
- type: mrr_at_3
|
3012 |
+
value: 94.255
|
3013 |
+
- type: mrr_at_5
|
3014 |
+
value: 94.464
|
3015 |
+
- type: ndcg_at_1
|
3016 |
+
value: 92.548
|
3017 |
+
- type: ndcg_at_10
|
3018 |
+
value: 88.74600000000001
|
3019 |
+
- type: ndcg_at_100
|
3020 |
+
value: 91.58500000000001
|
3021 |
+
- type: ndcg_at_1000
|
3022 |
+
value: 91.953
|
3023 |
+
- type: ndcg_at_3
|
3024 |
+
value: 89.578
|
3025 |
+
- type: ndcg_at_5
|
3026 |
+
value: 88.584
|
3027 |
+
- type: precision_at_1
|
3028 |
+
value: 92.548
|
3029 |
+
- type: precision_at_10
|
3030 |
+
value: 43.954
|
3031 |
+
- type: precision_at_100
|
3032 |
+
value: 5.099
|
3033 |
+
- type: precision_at_1000
|
3034 |
+
value: 0.518
|
3035 |
+
- type: precision_at_3
|
3036 |
+
value: 78.213
|
3037 |
+
- type: precision_at_5
|
3038 |
+
value: 65.839
|
3039 |
+
- type: recall_at_1
|
3040 |
+
value: 28.936
|
3041 |
+
- type: recall_at_10
|
3042 |
+
value: 87.869
|
3043 |
+
- type: recall_at_100
|
3044 |
+
value: 97.286
|
3045 |
+
- type: recall_at_1000
|
3046 |
+
value: 99.173
|
3047 |
+
- type: recall_at_3
|
3048 |
+
value: 59.157000000000004
|
3049 |
+
- type: recall_at_5
|
3050 |
+
value: 74.02499999999999
|
3051 |
+
- task:
|
3052 |
+
type: Classification
|
3053 |
+
dataset:
|
3054 |
+
type: C-MTEB/TNews-classification
|
3055 |
+
name: MTEB TNews
|
3056 |
+
config: default
|
3057 |
+
split: validation
|
3058 |
+
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
3059 |
+
metrics:
|
3060 |
+
- type: accuracy
|
3061 |
+
value: 53.269
|
3062 |
+
- type: f1
|
3063 |
+
value: 50.68236445411186
|
3064 |
+
- task:
|
3065 |
+
type: Clustering
|
3066 |
+
dataset:
|
3067 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
3068 |
+
name: MTEB ThuNewsClusteringP2P
|
3069 |
+
config: default
|
3070 |
+
split: test
|
3071 |
+
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
3072 |
+
metrics:
|
3073 |
+
- type: v_measure
|
3074 |
+
value: 86.47994658950259
|
3075 |
+
- task:
|
3076 |
+
type: Clustering
|
3077 |
+
dataset:
|
3078 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
3079 |
+
name: MTEB ThuNewsClusteringS2S
|
3080 |
+
config: default
|
3081 |
+
split: test
|
3082 |
+
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
3083 |
+
metrics:
|
3084 |
+
- type: v_measure
|
3085 |
+
value: 85.34791895793325
|
3086 |
+
- task:
|
3087 |
+
type: Retrieval
|
3088 |
+
dataset:
|
3089 |
+
type: C-MTEB/VideoRetrieval
|
3090 |
+
name: MTEB VideoRetrieval
|
3091 |
+
config: default
|
3092 |
+
split: dev
|
3093 |
+
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
|
3094 |
+
metrics:
|
3095 |
+
- type: map_at_1
|
3096 |
+
value: 65.5
|
3097 |
+
- type: map_at_10
|
3098 |
+
value: 74.134
|
3099 |
+
- type: map_at_100
|
3100 |
+
value: 74.49799999999999
|
3101 |
+
- type: map_at_1000
|
3102 |
+
value: 74.509
|
3103 |
+
- type: map_at_3
|
3104 |
+
value: 72.467
|
3105 |
+
- type: map_at_5
|
3106 |
+
value: 73.462
|
3107 |
+
- type: mrr_at_1
|
3108 |
+
value: 65.5
|
3109 |
+
- type: mrr_at_10
|
3110 |
+
value: 74.134
|
3111 |
+
- type: mrr_at_100
|
3112 |
+
value: 74.49799999999999
|
3113 |
+
- type: mrr_at_1000
|
3114 |
+
value: 74.509
|
3115 |
+
- type: mrr_at_3
|
3116 |
+
value: 72.467
|
3117 |
+
- type: mrr_at_5
|
3118 |
+
value: 73.462
|
3119 |
+
- type: ndcg_at_1
|
3120 |
+
value: 65.5
|
3121 |
+
- type: ndcg_at_10
|
3122 |
+
value: 78.144
|
3123 |
+
- type: ndcg_at_100
|
3124 |
+
value: 79.726
|
3125 |
+
- type: ndcg_at_1000
|
3126 |
+
value: 79.97800000000001
|
3127 |
+
- type: ndcg_at_3
|
3128 |
+
value: 74.735
|
3129 |
+
- type: ndcg_at_5
|
3130 |
+
value: 76.55999999999999
|
3131 |
+
- type: precision_at_1
|
3132 |
+
value: 65.5
|
3133 |
+
- type: precision_at_10
|
3134 |
+
value: 9.06
|
3135 |
+
- type: precision_at_100
|
3136 |
+
value: 0.976
|
3137 |
+
- type: precision_at_1000
|
3138 |
+
value: 0.1
|
3139 |
+
- type: precision_at_3
|
3140 |
+
value: 27.1
|
3141 |
+
- type: precision_at_5
|
3142 |
+
value: 17.16
|
3143 |
+
- type: recall_at_1
|
3144 |
+
value: 65.5
|
3145 |
+
- type: recall_at_10
|
3146 |
+
value: 90.60000000000001
|
3147 |
+
- type: recall_at_100
|
3148 |
+
value: 97.6
|
3149 |
+
- type: recall_at_1000
|
3150 |
+
value: 99.5
|
3151 |
+
- type: recall_at_3
|
3152 |
+
value: 81.3
|
3153 |
+
- type: recall_at_5
|
3154 |
+
value: 85.8
|
3155 |
+
- task:
|
3156 |
+
type: Classification
|
3157 |
+
dataset:
|
3158 |
+
type: C-MTEB/waimai-classification
|
3159 |
+
name: MTEB Waimai
|
3160 |
+
config: default
|
3161 |
+
split: test
|
3162 |
+
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
3163 |
+
metrics:
|
3164 |
+
- type: accuracy
|
3165 |
+
value: 89.43999999999998
|
3166 |
+
- type: ap
|
3167 |
+
value: 75.53653890653014
|
3168 |
+
- type: f1
|
3169 |
+
value: 87.91597334503136
|
3170 |
+
---
|
3171 |
+
|
3172 |
+
## gte-Qwen2-7B-instruct
|
3173 |
+
|
3174 |
+
**gte-Qwen2-7B-instruct** is the latest model in the gte (General Text Embedding) model family.
|
3175 |
+
|
3176 |
+
Recently, the [**Qwen team**](https://huggingface.co/Qwen) released the Qwen2 series models, and we have trained the **gte-Qwen2-7B-instruct** model based on the [Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) LLM model. Compared to the [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) model, the **gte-Qwen2-7B-instruct** model uses the same training data and training strategies during the finetuning stage, with the only difference being the upgraded base model to Qwen2-7B. Considering the improvements in the Qwen2 series models compared to the Qwen1.5 series, we can also expect consistent performance enhancements in the embedding models.
|
3177 |
+
|
3178 |
+
The model incorporates several key advancements:
|
3179 |
+
|
3180 |
+
- Integration of bidirectional attention mechanisms, enriching its contextual understanding.
|
3181 |
+
- Instruction tuning, applied solely on the query side for streamlined efficiency
|
3182 |
+
- Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks.
|
3183 |
+
|
3184 |
+
|
3185 |
+
## Model Information
|
3186 |
+
- Model Size: 7B
|
3187 |
+
- Embedding Dimension: 4096
|
3188 |
+
- Max Input Tokens: 32k
|
3189 |
+
|
3190 |
+
## Requirements
|
3191 |
+
```
|
3192 |
+
transformers>=4.39.2
|
3193 |
+
flash_attn>=2.5.6
|
3194 |
+
```
|
3195 |
+
## Usage
|
3196 |
+
|
3197 |
+
### Sentence Transformers
|
3198 |
+
|
3199 |
+
```python
|
3200 |
+
from sentence_transformers import SentenceTransformer
|
3201 |
+
|
3202 |
+
model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-7B-instruct", trust_remote_code=True)
|
3203 |
+
# In case you want to reduce the maximum length:
|
3204 |
+
model.max_seq_length = 8192
|
3205 |
+
|
3206 |
+
queries = [
|
3207 |
+
"how much protein should a female eat",
|
3208 |
+
"summit define",
|
3209 |
+
]
|
3210 |
+
documents = [
|
3211 |
+
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
3212 |
+
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.",
|
3213 |
+
]
|
3214 |
+
|
3215 |
+
query_embeddings = model.encode(queries, prompt_name="query")
|
3216 |
+
document_embeddings = model.encode(documents)
|
3217 |
+
|
3218 |
+
scores = (query_embeddings @ document_embeddings.T) * 100
|
3219 |
+
print(scores.tolist())
|
3220 |
+
```
|
3221 |
+
|
3222 |
+
Observe the [config_sentence_transformers.json](config_sentence_transformers.json) to see all pre-built prompt names. Otherwise, you can use `model.encode(queries, prompt="Instruct: ...\nQuery: "` to use a custom prompt of your choice.
|
3223 |
+
|
3224 |
+
### Transformers
|
3225 |
+
|
3226 |
+
```python
|
3227 |
+
import torch
|
3228 |
+
import torch.nn.functional as F
|
3229 |
+
|
3230 |
+
from torch import Tensor
|
3231 |
+
from transformers import AutoTokenizer, AutoModel
|
3232 |
+
|
3233 |
+
|
3234 |
+
def last_token_pool(last_hidden_states: Tensor,
|
3235 |
+
attention_mask: Tensor) -> Tensor:
|
3236 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
3237 |
+
if left_padding:
|
3238 |
+
return last_hidden_states[:, -1]
|
3239 |
+
else:
|
3240 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
3241 |
+
batch_size = last_hidden_states.shape[0]
|
3242 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
3243 |
+
|
3244 |
+
|
3245 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
3246 |
+
return f'Instruct: {task_description}\nQuery: {query}'
|
3247 |
+
|
3248 |
+
|
3249 |
+
# Each query must come with a one-sentence instruction that describes the task
|
3250 |
+
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
3251 |
+
queries = [
|
3252 |
+
get_detailed_instruct(task, 'how much protein should a female eat'),
|
3253 |
+
get_detailed_instruct(task, 'summit define')
|
3254 |
+
]
|
3255 |
+
# No need to add instruction for retrieval documents
|
3256 |
+
documents = [
|
3257 |
+
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
3258 |
+
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
3259 |
+
]
|
3260 |
+
input_texts = queries + documents
|
3261 |
+
|
3262 |
+
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-Qwen2-7B-instruct', trust_remote_code=True)
|
3263 |
+
model = AutoModel.from_pretrained('Alibaba-NLP/gte-Qwen2-7B-instruct', trust_remote_code=True)
|
3264 |
+
|
3265 |
+
max_length = 8192
|
3266 |
+
|
3267 |
+
# Tokenize the input texts
|
3268 |
+
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt')
|
3269 |
+
outputs = model(**batch_dict)
|
3270 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
3271 |
+
|
3272 |
+
# normalize embeddings
|
3273 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
3274 |
+
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
3275 |
+
print(scores.tolist())
|
3276 |
+
```
|
3277 |
+
|
3278 |
+
## Evaluation
|
3279 |
+
|
3280 |
+
### MTEB & C-MTEB
|
3281 |
+
|
3282 |
+
You can use the [scripts/eval_mteb.py](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen2-7B-instruct** on MTEB(English)/C-MTEB(Chinese):
|
3283 |
+
|
3284 |
+
| Model Name | MTEB(56) | C-MTEB(35) |
|
3285 |
+
|:----:|:---------:|:----------:|
|
3286 |
+
| [bge-base-en-1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 64.23 | - |
|
3287 |
+
| [bge-large-en-1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 63.55 | - |
|
3288 |
+
| [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - |
|
3289 |
+
| [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - |
|
3290 |
+
| [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - |
|
3291 |
+
| [acge_text_embedding](https://huggingface.co/aspire/acge_text_embedding) | - | 69.07 |
|
3292 |
+
| [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d) | - | 68.55 |
|
3293 |
+
| [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | - | 66.72 |
|
3294 |
+
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 59.45 | 56.21 |
|
3295 |
+
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 61.50 | 58.81 |
|
3296 |
+
| [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 |
|
3297 |
+
| [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 |
|
3298 |
+
| [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1) | 69.32 | - |
|
3299 |
+
| [**gte-Qwen2-7B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | **70.04** | **71.98** |
|
3300 |
+
|
3301 |
+
### GTE Models
|
3302 |
+
|
3303 |
+
The gte series models have consistently released two types of models: encoder-only models (based on the BERT architecture) and decode-only models (based on the LLM architecture).
|
3304 |
+
|
3305 |
+
## Citation
|
3306 |
+
|
3307 |
+
If you find our paper or models helpful, please consider cite:
|
3308 |
+
|
3309 |
+
```
|
3310 |
+
@article{li2023towards,
|
3311 |
+
title={Towards general text embeddings with multi-stage contrastive learning},
|
3312 |
+
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
3313 |
+
journal={arXiv preprint arXiv:2308.03281},
|
3314 |
+
year={2023}
|
3315 |
+
}
|
3316 |
+
```
|