Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ library_name: transformers
|
|
12 |
|
13 |
We are excited to introduce the `gte-modernbert` series of models, which are built upon the latest modernBERT pre-trained encoder-only foundation models. The `gte-modernbert` series models include both text embedding models and rerank models.
|
14 |
|
15 |
-
The `gte-modernbert` models demonstrates competitive performance in several text embedding and text retrieval evaluation tasks when compared to similar-scale models from the current open-source community. This includes assessments such as
|
16 |
|
17 |
## Model Overview
|
18 |
|
@@ -24,17 +24,19 @@ The `gte-modernbert` models demonstrates competitive performance in several text
|
|
24 |
- Output Dimension: 768
|
25 |
|
26 |
### Model list
|
|
|
|
|
27 |
| Models | Language | Model Type | Model Size | Max Seq. Length | Dimension | MTEB-en | BEIR | LoCo | CoIR |
|
28 |
-
|
29 |
-
| [`gte-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | English | text embedding | 149M | 8192 | 768 |
|
30 |
-
| [`gte-reranker-modernbert-base`](
|
31 |
|
32 |
## Usage
|
33 |
|
34 |
Use with `Transformers`
|
35 |
|
36 |
```python
|
37 |
-
# Requires transformers>=4.
|
38 |
|
39 |
import torch.nn.functional as F
|
40 |
from transformers import AutoModel, AutoTokenizer
|
@@ -125,7 +127,7 @@ The results of other models are retrieved from [MTEB leaderboard](https://huggin
|
|
125 |
| [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) | | 768 | 8192 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | 53.01| 81.94 | 30.4 |
|
126 |
| [gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) | 305 | 768 | 8192 | 61.4 | 70.89 | 44.31 | 84.24 | 57.47 |51.08 | 82.11 | 30.58 |
|
127 |
| [jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) | 572 | 1024 | 8192 | 65.51 | 82.58 |45.21 |84.01 |58.13 |53.88 | 85.81 | 29.71 |
|
128 |
-
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) |
|
129 |
|
130 |
|
131 |
### LoCo (Long Document Retrieval)
|
@@ -142,17 +144,17 @@ The results of other models are retrieved from [MTEB leaderboard](https://huggin
|
|
142 |
|
143 |
| Model Name | Dimension | Sequence Length | Average(20) | CodeSearchNet-ccr-go | CodeSearchNet-ccr-java | CodeSearchNet-ccr-javascript | CodeSearchNet-ccr-php | CodeSearchNet-ccr-python | CodeSearchNet-ccr-ruby | CodeSearchNet-go | CodeSearchNet-java | CodeSearchNet-javascript | CodeSearchNet-php | CodeSearchNet-python | CodeSearchNet-ruby | apps | codefeedback-mt | codefeedback-st | codetrans-contest | codetrans-dl | cosqa | stackoverflow-qa | synthetic-text2sql |
|
144 |
|:----:|:---:|:---:|:---:|:---:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
145 |
-
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 |
|
146 |
-
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 79.
|
147 |
-
|
148 |
-
|
149 |
|
150 |
### BEIR
|
151 |
|
152 |
-
| Model Name | Dimension | Sequence Length | Average(15) | ArguAna
|
153 |
-
|
|
154 |
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 55.33 | 72.68 | 37.74 | 42.63 | 41.79 | 91.03 | 48.81 | 69.47 | 40.9 | 36.44 | 57.62 | 88.55 | 21.29 | 77.4 | 21.68 | 81.95 |
|
155 |
-
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 69.03 | 37.79 | 44.68 | 47.23 | 94.54 | 49.81 | 78.16 | 45.38 | 30.69 | 64.57 | 87.77 | 20.60 | 73.57 | 27.36 | 79.89 |
|
|
|
|
|
156 |
|
157 |
## Citation
|
158 |
|
|
|
12 |
|
13 |
We are excited to introduce the `gte-modernbert` series of models, which are built upon the latest modernBERT pre-trained encoder-only foundation models. The `gte-modernbert` series models include both text embedding models and rerank models.
|
14 |
|
15 |
+
The `gte-modernbert` models demonstrates competitive performance in several text embedding and text retrieval evaluation tasks when compared to similar-scale models from the current open-source community. This includes assessments such as MTEB, LoCO, and COIR evaluation.
|
16 |
|
17 |
## Model Overview
|
18 |
|
|
|
24 |
- Output Dimension: 768
|
25 |
|
26 |
### Model list
|
27 |
+
|
28 |
+
|
29 |
| Models | Language | Model Type | Model Size | Max Seq. Length | Dimension | MTEB-en | BEIR | LoCo | CoIR |
|
30 |
+
|:--------------------------------------------------------------------------------------:|:--------:|:----------------------:|:----------:|:---------------:|:---------:|:-------:|:----:|:----:|:----:|
|
31 |
+
| [`gte-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | English | text embedding | 149M | 8192 | 768 | 67.34 | 55.33 | 87.57 | 79.31 |
|
32 |
+
| [`gte-reranker-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | English | text reranker | 149M | 8192 | - | - | 56.19 | 90.68 | 79.99 |
|
33 |
|
34 |
## Usage
|
35 |
|
36 |
Use with `Transformers`
|
37 |
|
38 |
```python
|
39 |
+
# Requires transformers>=4.36.0
|
40 |
|
41 |
import torch.nn.functional as F
|
42 |
from transformers import AutoModel, AutoTokenizer
|
|
|
127 |
| [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) | | 768 | 8192 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | 53.01| 81.94 | 30.4 |
|
128 |
| [gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) | 305 | 768 | 8192 | 61.4 | 70.89 | 44.31 | 84.24 | 57.47 |51.08 | 82.11 | 30.58 |
|
129 |
| [jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) | 572 | 1024 | 8192 | 65.51 | 82.58 |45.21 |84.01 |58.13 |53.88 | 85.81 | 29.71 |
|
130 |
+
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 572 | 1024 | 8192 | 64.38 | 76.99 | 46.47 | 85.93 | 59.24 | 55.33 | 81.57 | 30.68 |
|
131 |
|
132 |
|
133 |
### LoCo (Long Document Retrieval)
|
|
|
144 |
|
145 |
| Model Name | Dimension | Sequence Length | Average(20) | CodeSearchNet-ccr-go | CodeSearchNet-ccr-java | CodeSearchNet-ccr-javascript | CodeSearchNet-ccr-php | CodeSearchNet-ccr-python | CodeSearchNet-ccr-ruby | CodeSearchNet-go | CodeSearchNet-java | CodeSearchNet-javascript | CodeSearchNet-php | CodeSearchNet-python | CodeSearchNet-ruby | apps | codefeedback-mt | codefeedback-st | codetrans-contest | codetrans-dl | cosqa | stackoverflow-qa | synthetic-text2sql |
|
146 |
|:----:|:---:|:---:|:---:|:---:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
147 |
+
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 79.31 | 94.15 | 93.57 | 94.27 | 91.51 | 93.93 | 90.63 | 88.32 | 83.27 | 76.05 | 85.12 | 88.16 | 77.59 | 57.54 | 82.34 | 85.95 | 71.89 | 35.46 | 43.47 | 91.2 | 61.87 |
|
148 |
+
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 79.99 | 96.43 | 96.88 | 98.32 | 91.81 | 97.7 | 91.96 | 88.81 | 79.71 | 76.27 | 89.39 | 98.37 | 84.11 | 47.57 | 83.37 | 88.91 | 49.66 | 36.36 | 44.37 | 89.58 | 64.21 |
|
|
|
|
|
149 |
|
150 |
### BEIR
|
151 |
|
152 |
+
| Model Name | Dimension | Sequence Length | Average(15) | ArguAna | ClimateFEVER | CQADupstackAndroidRetrieval | DBPedia | FEVER | FiQA2018 | HotpotQA | MSMARCO | NFCorpus | NQ | QuoraRetrieval | SCIDOCS | SciFact | Touche2020 | TRECCOVID |
|
153 |
+
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
154 |
| [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 55.33 | 72.68 | 37.74 | 42.63 | 41.79 | 91.03 | 48.81 | 69.47 | 40.9 | 36.44 | 57.62 | 88.55 | 21.29 | 77.4 | 21.68 | 81.95 |
|
155 |
+
| [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 56.73 | 69.03 | 37.79 | 44.68 | 47.23 | 94.54 | 49.81 | 78.16 | 45.38 | 30.69 | 64.57 | 87.77 | 20.60 | 73.57 | 27.36 | 79.89 |
|
156 |
+
|
157 |
+
|
158 |
|
159 |
## Citation
|
160 |
|