zyznull commited on
Commit
1fd1a1f
·
verified ·
1 Parent(s): 9369e9f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -13
README.md CHANGED
@@ -12,7 +12,7 @@ library_name: transformers
12
 
13
  We are excited to introduce the `gte-modernbert` series of models, which are built upon the latest modernBERT pre-trained encoder-only foundation models. The `gte-modernbert` series models include both text embedding models and rerank models.
14
 
15
- The `gte-modernbert` models demonstrates competitive performance in several text embedding and text retrieval evaluation tasks when compared to similar-scale models from the current open-source community. This includes assessments such as **MTEB**, **LoCO**, and **COIR** evaluation.
16
 
17
  ## Model Overview
18
 
@@ -24,17 +24,19 @@ The `gte-modernbert` models demonstrates competitive performance in several text
24
  - Output Dimension: 768
25
 
26
  ### Model list
 
 
27
  | Models | Language | Model Type | Model Size | Max Seq. Length | Dimension | MTEB-en | BEIR | LoCo | CoIR |
28
- |:--------------------------------------------------------------------------------------:|:--------:|:----------------------:|:----------:|:---------------:|:---------:| :-----: | :-----: |
29
- | [`gte-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | English | text embedding | 149M | 8192 | 768 | 64.29 | 55.33 | 87.57 | 77.69 |
30
- | [`gte-reranker-modernbert-base`](hhttps://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | English | text reranker | 149M | 8192 | - | 56.19 | 90.68 | 79.31 |
31
 
32
  ## Usage
33
 
34
  Use with `Transformers`
35
 
36
  ```python
37
- # Requires transformers>=4.48.0
38
 
39
  import torch.nn.functional as F
40
  from transformers import AutoModel, AutoTokenizer
@@ -125,7 +127,7 @@ The results of other models are retrieved from [MTEB leaderboard](https://huggin
125
  | [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) | | 768 | 8192 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | 53.01| 81.94 | 30.4 |
126
  | [gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) | 305 | 768 | 8192 | 61.4 | 70.89 | 44.31 | 84.24 | 57.47 |51.08 | 82.11 | 30.58 |
127
  | [jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) | 572 | 1024 | 8192 | 65.51 | 82.58 |45.21 |84.01 |58.13 |53.88 | 85.81 | 29.71 |
128
- | [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 149 | 768 | 8192 | 64.29 | 76.32 | 45.31 | 86.49 | 58.33 | 55.33 | 83.41 | 29.17 |
129
 
130
 
131
  ### LoCo (Long Document Retrieval)
@@ -142,17 +144,17 @@ The results of other models are retrieved from [MTEB leaderboard](https://huggin
142
 
143
  | Model Name | Dimension | Sequence Length | Average(20) | CodeSearchNet-ccr-go | CodeSearchNet-ccr-java | CodeSearchNet-ccr-javascript | CodeSearchNet-ccr-php | CodeSearchNet-ccr-python | CodeSearchNet-ccr-ruby | CodeSearchNet-go | CodeSearchNet-java | CodeSearchNet-javascript | CodeSearchNet-php | CodeSearchNet-python | CodeSearchNet-ruby | apps | codefeedback-mt | codefeedback-st | codetrans-contest | codetrans-dl | cosqa | stackoverflow-qa | synthetic-text2sql |
144
  |:----:|:---:|:---:|:---:|:---:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
145
- | [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 77.26 | 95.15 | 94.75 | 96.55 | 91.64 | 95.31 | 90.71 | 86.41 | 79.09 | 97.66 | 80.22 | 42.05 | 55.2 | 84.77 | 52.53 |
146
- | [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 79.31 | 94.15 | 93.57 | 94.27 | 91.51 | 93.93 | 90.63 | 88.32 | 83.27 | 76.05 | 85.12 | 88.16 | 77.59 | 57.54 | 82.34 | 85.95 | 71.89 |
147
-
148
-
149
 
150
  ### BEIR
151
 
152
- | Model Name | Dimension | Sequence Length | Average(15) | ArguAna | ClimateFEVER | CQADupstackAndroidRetrieval | DBPedia | FEVER | FiQA2018 | HotpotQA | MSMARCO | NFCorpus | NQ | QuoraRetrieval | SCIDOCS | SciFact | Touche2020 | TRECCOVID |
153
- | :----: | :----: | :----: | :----: | :----: | :---: | :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: |
154
  | [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 55.33 | 72.68 | 37.74 | 42.63 | 41.79 | 91.03 | 48.81 | 69.47 | 40.9 | 36.44 | 57.62 | 88.55 | 21.29 | 77.4 | 21.68 | 81.95 |
155
- | [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 69.03 | 37.79 | 44.68 | 47.23 | 94.54 | 49.81 | 78.16 | 45.38 | 30.69 | 64.57 | 87.77 | 20.60 | 73.57 | 27.36 | 79.89 |
 
 
156
 
157
  ## Citation
158
 
 
12
 
13
  We are excited to introduce the `gte-modernbert` series of models, which are built upon the latest modernBERT pre-trained encoder-only foundation models. The `gte-modernbert` series models include both text embedding models and rerank models.
14
 
15
+ The `gte-modernbert` models demonstrates competitive performance in several text embedding and text retrieval evaluation tasks when compared to similar-scale models from the current open-source community. This includes assessments such as MTEB, LoCO, and COIR evaluation.
16
 
17
  ## Model Overview
18
 
 
24
  - Output Dimension: 768
25
 
26
  ### Model list
27
+
28
+
29
  | Models | Language | Model Type | Model Size | Max Seq. Length | Dimension | MTEB-en | BEIR | LoCo | CoIR |
30
+ |:--------------------------------------------------------------------------------------:|:--------:|:----------------------:|:----------:|:---------------:|:---------:|:-------:|:----:|:----:|:----:|
31
+ | [`gte-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | English | text embedding | 149M | 8192 | 768 | 67.34 | 55.33 | 87.57 | 79.31 |
32
+ | [`gte-reranker-modernbert-base`](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | English | text reranker | 149M | 8192 | - | - | 56.19 | 90.68 | 79.99 |
33
 
34
  ## Usage
35
 
36
  Use with `Transformers`
37
 
38
  ```python
39
+ # Requires transformers>=4.36.0
40
 
41
  import torch.nn.functional as F
42
  from transformers import AutoModel, AutoTokenizer
 
127
  | [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) | | 768 | 8192 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | 53.01| 81.94 | 30.4 |
128
  | [gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) | 305 | 768 | 8192 | 61.4 | 70.89 | 44.31 | 84.24 | 57.47 |51.08 | 82.11 | 30.58 |
129
  | [jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) | 572 | 1024 | 8192 | 65.51 | 82.58 |45.21 |84.01 |58.13 |53.88 | 85.81 | 29.71 |
130
+ | [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 572 | 1024 | 8192 | 64.38 | 76.99 | 46.47 | 85.93 | 59.24 | 55.33 | 81.57 | 30.68 |
131
 
132
 
133
  ### LoCo (Long Document Retrieval)
 
144
 
145
  | Model Name | Dimension | Sequence Length | Average(20) | CodeSearchNet-ccr-go | CodeSearchNet-ccr-java | CodeSearchNet-ccr-javascript | CodeSearchNet-ccr-php | CodeSearchNet-ccr-python | CodeSearchNet-ccr-ruby | CodeSearchNet-go | CodeSearchNet-java | CodeSearchNet-javascript | CodeSearchNet-php | CodeSearchNet-python | CodeSearchNet-ruby | apps | codefeedback-mt | codefeedback-st | codetrans-contest | codetrans-dl | cosqa | stackoverflow-qa | synthetic-text2sql |
146
  |:----:|:---:|:---:|:---:|:---:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
147
+ | [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 79.31 | 94.15 | 93.57 | 94.27 | 91.51 | 93.93 | 90.63 | 88.32 | 83.27 | 76.05 | 85.12 | 88.16 | 77.59 | 57.54 | 82.34 | 85.95 | 71.89 | 35.46 | 43.47 | 91.2 | 61.87 |
148
+ | [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 79.99 | 96.43 | 96.88 | 98.32 | 91.81 | 97.7 | 91.96 | 88.81 | 79.71 | 76.27 | 89.39 | 98.37 | 84.11 | 47.57 | 83.37 | 88.91 | 49.66 | 36.36 | 44.37 | 89.58 | 64.21 |
 
 
149
 
150
  ### BEIR
151
 
152
+ | Model Name | Dimension | Sequence Length | Average(15) | ArguAna | ClimateFEVER | CQADupstackAndroidRetrieval | DBPedia | FEVER | FiQA2018 | HotpotQA | MSMARCO | NFCorpus | NQ | QuoraRetrieval | SCIDOCS | SciFact | Touche2020 | TRECCOVID |
153
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
154
  | [gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 55.33 | 72.68 | 37.74 | 42.63 | 41.79 | 91.03 | 48.81 | 69.47 | 40.9 | 36.44 | 57.62 | 88.55 | 21.29 | 77.4 | 21.68 | 81.95 |
155
+ | [gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 56.73 | 69.03 | 37.79 | 44.68 | 47.23 | 94.54 | 49.81 | 78.16 | 45.38 | 30.69 | 64.57 | 87.77 | 20.60 | 73.57 | 27.36 | 79.89 |
156
+
157
+
158
 
159
  ## Citation
160