Update Transformers.js sample code (#6)
Browse files- Update Transformers.js sample code (26dda71fa433170ff379aaa64b6ad0500a81a415)
- Update README.md (3d26940620003c46d06bfa7663552f42e00b65bc)
Co-authored-by: Joshua <Xenova@users.noreply.huggingface.co>
README.md
CHANGED
@@ -10,6 +10,7 @@ tags:
|
|
10 |
- sentence-transformers
|
11 |
- mteb
|
12 |
- embedding
|
|
|
13 |
---
|
14 |
|
15 |
# gte-modernbert-base
|
@@ -103,27 +104,30 @@ print(similarities)
|
|
103 |
Use with `transformers.js`:
|
104 |
|
105 |
```js
|
106 |
-
// npm i @
|
107 |
-
import { pipeline,
|
108 |
-
|
109 |
-
// Create feature extraction pipeline
|
110 |
-
const extractor = await pipeline(
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
116 |
"what is the capital of China?",
|
117 |
"how to implement quick sort in python?",
|
118 |
"Beijing",
|
119 |
-
"sorting algorithms"
|
120 |
-
]
|
121 |
-
|
|
|
122 |
|
123 |
// Compute similarity scores
|
124 |
-
const [
|
125 |
-
|
126 |
-
console.log(similarities);
|
127 |
```
|
128 |
|
129 |
## Training Details
|
|
|
10 |
- sentence-transformers
|
11 |
- mteb
|
12 |
- embedding
|
13 |
+
- transformers.js
|
14 |
---
|
15 |
|
16 |
# gte-modernbert-base
|
|
|
104 |
Use with `transformers.js`:
|
105 |
|
106 |
```js
|
107 |
+
// npm i @huggingface/transformers
|
108 |
+
import { pipeline, matmul } from "@huggingface/transformers";
|
109 |
+
|
110 |
+
// Create a feature extraction pipeline
|
111 |
+
const extractor = await pipeline(
|
112 |
+
"feature-extraction",
|
113 |
+
"Alibaba-NLP/gte-modernbert-base",
|
114 |
+
{ dtype: "fp32" }, // Supported options: "fp32", "fp16", "q8", "q4", "q4f16"
|
115 |
+
);
|
116 |
+
|
117 |
+
// Embed queries and documents
|
118 |
+
const embeddings = await extractor(
|
119 |
+
[
|
120 |
"what is the capital of China?",
|
121 |
"how to implement quick sort in python?",
|
122 |
"Beijing",
|
123 |
+
"sorting algorithms",
|
124 |
+
],
|
125 |
+
{ pooling: "cls", normalize: true },
|
126 |
+
);
|
127 |
|
128 |
// Compute similarity scores
|
129 |
+
const similarities = (await matmul(embeddings.slice([0, 1]), embeddings.slice([1, null]).transpose(1, 0))).mul(100);
|
130 |
+
console.log(similarities.tolist()); // [[42.89077377319336, 71.30916595458984, 33.66455841064453]]
|
|
|
131 |
```
|
132 |
|
133 |
## Training Details
|