AlkQ commited on
Commit
912d9e7
·
verified ·
1 Parent(s): 0365bb6

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 252.58 +/- 22.09
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 251.17 +/- 22.98
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b4784ff9990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b4784ff9a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b4784ff9ab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b4784ff9b40>", "_build": "<function ActorCriticPolicy._build at 0x7b4784ff9bd0>", "forward": "<function ActorCriticPolicy.forward at 0x7b4784ff9c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b4784ff9cf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b4784ff9d80>", "_predict": "<function ActorCriticPolicy._predict at 0x7b4784ff9e10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b4784ff9ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b4784ff9f30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b4784ff9fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b4784f92500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714493292423303211, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANr1SL5YpMY+m4ptPo3lVr6XLcE8BjCVvAAAAAAAAAAAxs8hvh/ReT8WHZE83hG8vsExYL1c5Qw6AAAAAAAAAACmc4G9tdmcPueyDr6/EYu+skDSvW9vEz0AAAAAAAAAAE0uc72PCm+6ji+hO5ByHDiwnia7QvnRtwAAgD8AAIA/zeAnPOyM57uqsUg8a8KTPAXVSr2YDng9AACAPwAAgD8zu9E7wxdjvG7ukT1Zlty948uevYLN274AAIA/AACAP+bpGr04loQ/XlICvmfhtb4nKGC91300vQAAAAAAAAAAZlpKvTb4f7wXOQc+sg3Vve9yzTy25To9AACAPwAAgD/NYey9YGcQP9J1uT0ZFD2+oVCTuxQhhT0AAAAAAAAAADN7WT2P3gq6b+aPs2ZHiK71CsE59bmvMwAAgD8AAIA/ZpbRulz7YbrugjC6T5MYtTiLzrkTzk45AACAPwAAgD9NIgy9aaz9PjvDzr0Fjam+DD+vvSb7tboAAAAAAAAAAPNUor0zRr4/qqkCv4QMhz1NVly92ryRvgAAAAAAAAAAAMBgPLcYCT+2RYI8/W50vjXoCT3wP9e9AAAAAAAAAADNbMK8w5kvupJvOTn/AKA0Io3BOlPxVLgAAIA/AACAP7NPD73hPIG6RQNdN/XgSTIwHx+6XiSBtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+brbYbsGCMAWyUTUIBjAF0lEdAkjN+MuOCG3V9lChoBkdAcB4Hn2ZiNWgHTVcBaAhHQJIzvj0cwQF1fZQoaAZHQHEKqOHWSU1oB00hAWgIR0CSM+naWX1KdX2UKGgGR0Bzc5cqvvBraAdNPgFoCEdAkjP/JV81GnV9lChoBkdAbBJOuaF23mgHTRUBaAhHQJI01Oymhuh1fZQoaAZHQHDldR3u/lBoB01XAWgIR0CSNmU1hsqKdX2UKGgGR0ByK2XHBDXwaAdL+2gIR0CSNmradtl7dX2UKGgGR0BvhcwWWQfZaAdNMAFoCEdAkjccJMQEp3V9lChoBkdAcEO2vjfelGgHTSoBaAhHQJI3Qy57PY51fZQoaAZHQHImf/7zkIZoB00+AWgIR0CSN988La24dX2UKGgGR0BuhB5gPVd5aAdNKQFoCEdAkjgD+zdDY3V9lChoBkdAULe10DEFXGgHS9FoCEdAkjmKcqe9SXV9lChoBkdAcU7t9hJAdGgHTSoBaAhHQJI6QcebNKR1fZQoaAZHQHIFNjLB9CxoB00sAWgIR0CSOwGT9sJqdX2UKGgGR0BwJpyNn5BUaAdNJQFoCEdAkjw0UO/cnHV9lChoBkdAcqHxBVuJlGgHTTEBaAhHQJI8eij+Jgt1fZQoaAZHQHD79fG+9J1oB00gAWgIR0CSPYWMju8cdX2UKGgGR0By2uMaS9uhaAdNIAFoCEdAkj2p0jkdWHV9lChoBkdAcoup84Pwu2gHTTkBaAhHQJI983Ov+wV1fZQoaAZHQHE3OuRs/INoB01gAWgIR0CSQBnP3SKFdX2UKGgGR0BtxlzhgmZ3aAdNEAFoCEdAkkCpYcNpd3V9lChoBkdAcTqLS/j81mgHTSUBaAhHQJJBVBKL8791fZQoaAZHQHCfzWf9P1toB01pAWgIR0CSQcd1uBMBdX2UKGgGR0Bz71q+JxecaAdNAQFoCEdAkkHoUFjd6HV9lChoBkdAcRead+Xqq2gHTUQBaAhHQJJC6Dxsl9l1fZQoaAZHQHGknai9IwxoB000AWgIR0CSQzPSUkfLdX2UKGgGR0Bw5UA4n4O+aAdNYQFoCEdAkkPYXsPatnV9lChoBkdAcL/WTX8O1GgHTTMBaAhHQJJEs8kleGB1fZQoaAZHQFLsEi+tbLVoB0vTaAhHQJJEvVYp2EF1fZQoaAZHQHKI9WMju8doB00lAWgIR0CSRMmrbQC0dX2UKGgGR0ByhnskY4yXaAdNRAFoCEdAkkYjUqhDgXV9lChoBkdAcf3raM72c2gHTToBaAhHQJJGq6ClJpZ1fZQoaAZHQGzMwNLDhtNoB00aAWgIR0CSRtM5OrQxdX2UKGgGR0ByDeNgjQiSaAdNMgFoCEdAkkewzUI9knV9lChoBkdAby7SF49ovmgHTSMBaAhHQJJJQnb7CSB1fZQoaAZHQG6Welj3EhtoB00+AWgIR0CSSbsenyd4dX2UKGgGR0Bx3ozqKP4maAdNlwFoCEdAkknaPjn3c3V9lChoBkdAcXTUsnRb8mgHTSoBaAhHQJJKM50bLlp1fZQoaAZHQHAu7Tc6/7BoB0v9aAhHQJJKyvNeMQ51fZQoaAZHQG+8sb3oLXtoB00/AWgIR0CSS0etSydGdX2UKGgGR0BxY2pm29csaAdNPAFoCEdAkktUO/cnE3V9lChoBkdAcqp9LHuJDWgHTSkBaAhHQJJLxcpsoDx1fZQoaAZHQHDpWTot+ThoB00uAWgIR0CSTOgBcRlIdX2UKGgGR0ByGpA3T/hmaAdNEgFoCEdAkkzxeC04R3V9lChoBkdAbT+wM6RyO2gHTTwBaAhHQJJONjwx33Z1fZQoaAZHQG9kIoNNJvpoB00fAWgIR0CSTtYfnwG4dX2UKGgGR0BxdtUT+NtJaAdNEAFoCEdAkk8VVghKUXV9lChoBkdAbw4RGMGX5WgHTWsBaAhHQJJPjC1qnFZ1fZQoaAZHQHDLHuy/sVtoB006AWgIR0CSUCY1YQrddX2UKGgGR0ByUIzAN5MUaAdNLAFoCEdAklDV50KZ2XV9lChoBkdAci65fdAPd2gHTQcBaAhHQJJRHvoePq91fZQoaAZHQHEIt6ol2NhoB00uAWgIR0CSZBP69CeFdX2UKGgGR0BCFsANoakzaAdL8WgIR0CSZDEJ0GNadX2UKGgGR0BslYSrYGt7aAdNJgFoCEdAkmV2gi/wiXV9lChoBkdAcEUqlxffGmgHTU8BaAhHQJJlqy2QXAN1fZQoaAZHQHGT05+6RQtoB00qAWgIR0CSZauuzQeFdX2UKGgGR0Bw1NSR8twraAdNOwFoCEdAkmWp5AyEc3V9lChoBkdAcKjulGgBcWgHTXYBaAhHQJJmWYCyQgd1fZQoaAZHQG0TQZ4wAVBoB00lAWgIR0CSZyhttQ9BdX2UKGgGR0BRFFSn+AEuaAdL/mgIR0CSZ0zS1E3LdX2UKGgGR0Bwra+sYEW7aAdNLwFoCEdAkmdopx3mm3V9lChoBkdAcl1OxSpBHGgHTQMBaAhHQJJoonPVurJ1fZQoaAZHQHLp5VfeDWdoB01LAWgIR0CSaq2oNutPdX2UKGgGR0Bx+f1SOzY3aAdNSgFoCEdAkmylKTSssHV9lChoBkdAcH4TAFgUlGgHTToBaAhHQJJs6oZQ53l1fZQoaAZHQHDYhMzuWrxoB00+AWgIR0CSbYoIfKZEdX2UKGgGR0BxK5Ev0yxiaAdNKwFoCEdAkm9RUFSsKnV9lChoBkdAcZPinYQJ5WgHTUEBaAhHQJJwh+QU5+91fZQoaAZHQHE5JUcXFcZoB01IAWgIR0CSckGhVU++dX2UKGgGR0BxBpDYywfRaAdNRwFoCEdAknJuRYA80XV9lChoBkdAb2cPq9oN/mgHTU0BaAhHQJJyqtITXat1fZQoaAZHQHEQ2znied1oB00vAWgIR0CSc5Nc4YJmdX2UKGgGR0BxJR0o0ALiaAdNbQFoCEdAknPD0QK8c3V9lChoBkdAcMIlWOp84WgHTTUBaAhHQJJz7C3w1BN1fZQoaAZHQG8hKQzUI9loB01KAWgIR0CSdEzl90A+dX2UKGgGR0BwdTdcjZ+QaAdNgQFoCEdAknUbobGWEHV9lChoBkdAcNqaJhvzfGgHTSABaAhHQJJ2HQPZqVR1fZQoaAZHQG5Ep6IFeOZoB014AWgIR0CSd1u4gA6udX2UKGgGR0Bx1FbW3BpIaAdNIgFoCEdAkneOl0o0AXV9lChoBkdAb1Qhje9BbGgHTRMBaAhHQJJ48078vVV1fZQoaAZHQHKmcc6vJRxoB01VAWgIR0CSegbbDdgwdX2UKGgGR0ByI71f3N9qaAdNhQFoCEdAkntV5B1LanV9lChoBkdAcHUE2YOUdWgHTSIBaAhHQJJ8EeyRjjJ1fZQoaAZHQG0pmXw9aEBoB00mAWgIR0CSfGgXuVopdX2UKGgGR0BwZYEU0vXcaAdNRgFoCEdAkn3VYlpoK3V9lChoBkdAb/aox59mYmgHTSEBaAhHQJJ90+fRNRF1fZQoaAZHQG4x0gSvkiloB00ZAWgIR0CSfftNBWxRdX2UKGgGR0BVjjMqz7djaAdLtWgIR0CSfiupjtojdX2UKGgGR0BwUFWZJCjUaAdNOQFoCEdAkn5LCN0eVHV9lChoBkdAb6w4kNWluWgHTTwBaAhHQJJ+jHU+cH51fZQoaAZHQG5DXs5XEIhoB00KAWgIR0CSf1Wkadc0dX2UKGgGR0ByhqPo3aSLaAdNTgFoCEdAkoBdXko4MnV9lChoBkdAcfIF7D2rXGgHTdcBaAhHQJKAnUtqYZ51fZQoaAZHQG8vwJgLJCBoB00pAWgIR0CSgWarFOwgdX2UKGgGR0Byon/ffoA5aAdNCQFoCEdAkoHkzwc5sHV9lChoBkdAceeY7JW/8GgHS/poCEdAkoJOOjqOcXV9lChoBkdAYAMyDZlFt2gHTegDaAhHQJKC7cWTHKh1fZQoaAZHQHI+HryDqW1oB0vwaAhHQJKDgX+ERJ51fZQoaAZHQG3cOeJ53TxoB00sAWgIR0CShLeYlY2bdX2UKGgGR0BysA6kqMFVaAdNMgFoCEdAkoXM1n/T9nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bafca38add0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bafca38ae60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bafca38aef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bafca38af80>", "_build": "<function ActorCriticPolicy._build at 0x7bafca38b010>", "forward": "<function ActorCriticPolicy.forward at 0x7bafca38b0a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bafca38b130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bafca38b1c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bafca38b250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bafca38b2e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bafca38b370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bafca38b400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bafca390f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714498066153674942, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM22xT01hX4/G8LNPb7mor6bMTo9S1suvQAAAAAAAAAAAHBavDA1+j5hs6W98nNavuaUGDuIQ4C7AAAAAAAAAABaqTe+iXgOP9o/Mz7i9Hy+TY6tvDiBJzsAAAAAAAAAABLblL5DZEg/KvoIPt21k768wS2+pg55PgAAAAAAAAAAc6OHvT1dJ7tNkFu9lSFivnQD2TovVic9AAAAAAAAAAAAhfY9bGt6P0gz2z0s+rO+ES3ePcJ1hbsAAAAAAAAAAMB9uj2kd067TZWeu8UFlDxpEIo8EhJ+vQAAgD8AAIA/M0QvPaS7H7ti5VS8R3iVPDWiWjxyv4C9AACAPwAAgD/m0gG96zBdP4eeFrzWrsG+cEhevTuz7z0AAAAAAAAAAJohqrsSHbQ/lqEGv1EwLL5jXMU7uPfzPQAAAAAAAAAAM3BDPaGBxLwboA69sd77vBqyKr4sC8S9AACAPwAAgD8a61o9OLKOPepO7r2t1CO+sOu5vRKZEj0AAAAAAAAAAGYBJz2jVHI9p6SYvfYZL758USq8lEI2PQAAAAAAAAAA2urFPf82MT89z3w9ogGAvnfXqD0BZYc9AAAAAAAAAAAzz8I86eA1P8hV1bvhn6K+mVkHveMXI70AAAAAAAAAACYZ4j0/AyI+tSnbvecSl76f3oE8kILsPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKgsOLBKtiMAWyUTT8BjAF0lEdAoQaSFAVwgnV9lChoBkdAcpNuLJjlP2gHTbsBaAhHQKEGuPI4lyB1fZQoaAZHQHD9KHXVbzNoB00rAWgIR0ChD9RjSXt0dX2UKGgGR0ByHgakyk9EaAdNVwFoCEdAoRBiDbrTpnV9lChoBkdAcbMXlr/KhmgHTSQBaAhHQKESKHTqjah1fZQoaAZHQHEq2FSKm9BoB00oAWgIR0ChEyIl2NeddX2UKGgGR0BvD8EC/47BaAdNUgFoCEdAoRNOOS4e93V9lChoBkdAbcS//NqxkmgHTTMBaAhHQKETgGxD9fl1fZQoaAZHQHKl/nfVI7NoB01cAWgIR0ChE8jVH4GmdX2UKGgGR0Bws2WhRIjGaAdNLgFoCEdAoRQLeZXuE3V9lChoBkdAbVnoQnQY12gHTVkBaAhHQKEUEdlum791fZQoaAZHQG2bhrFfiP1oB01mAWgIR0ChFCQYDTz/dX2UKGgGR0Bw+ysuFpPAaAdNRwFoCEdAoRU2NJe3QXV9lChoBkdAcBHXPZ7HAGgHTTIBaAhHQKEVhnjABT51fZQoaAZHQG4Mj/2kBS1oB01FAWgIR0ChFbGkep4sdX2UKGgGR0Byt3BBRhttaAdNWAFoCEdAoRX1o+Ofd3V9lChoBkdAcMj8FINEw2gHTUwBaAhHQKEWlb+tKZl1fZQoaAZHQG/XJh4MWoFoB008AWgIR0ChFuCv5gw5dX2UKGgGR0ByRQKNQ0oCaAdNBAFoCEdAoRkkCJXQt3V9lChoBkdAb7Fwtrbg0mgHTQMBaAhHQKEZJLRrrPd1fZQoaAZHQHA9Vpfx+a1oB01VAWgIR0ChGTvPcBU8dX2UKGgGR0BwrDnied08aAdNNwFoCEdAoRmaKk2xZHV9lChoBkdAcFurzXjEN2gHTUQBaAhHQKEZvffoA4p1fZQoaAZHQHCSt7jT8YRoB00hAWgIR0ChGeWLYPGydX2UKGgGR0BwwmD3/PxAaAdNLwFoCEdAoRnmk+HJtHV9lChoBkdAcFCq4pc5bWgHTUMBaAhHQKEaJZid8Rd1fZQoaAZHQGDlbTlT3qRoB03oA2gIR0ChGzxIBikPdX2UKGgGR0BxBr73wkPdaAdNIgFoCEdAoRt3qZ+hG3V9lChoBkdARL5E+gUUPGgHTQ0BaAhHQKEbh1p0wJx1fZQoaAZHQHCUES7GvOhoB01AAWgIR0ChHC8mjTKDdX2UKGgGR0BxXrOHFglXaAdNMgFoCEdAoRz0G9pRGnV9lChoBkdAbp1LBbfP5mgHTSYBaAhHQKEdD5bhWHV1fZQoaAZHQG8HuxjawlloB00dAWgIR0ChHz1qveP8dX2UKGgGR0BPQ9l/YrauaAdN6ANoCEdAoR9hlOGj9HV9lChoBkdAclxx82JizGgHTTABaAhHQKEfivnKW9l1fZQoaAZHQHDUDdDYywhoB002AWgIR0ChH6dbX6IndX2UKGgGR0BwrfavicXnaAdNKwFoCEdAoR/cz9CNTHV9lChoBkdAcndcxj8UEmgHTSoBaAhHQKEf8seXAuZ1fZQoaAZHQHHFUEX+ERJoB00qAWgIR0ChIAiJwbVCdX2UKGgGR0BsyhKaoddWaAdNXwFoCEdAoSDqHbh3q3V9lChoBkdAbT1A2ycCo2gHTSEBaAhHQKEhE7rcCYF1fZQoaAZHQHA/JEhJRO1oB00LAWgIR0ChIVK+SKWLdX2UKGgGR0BxRUtcv/R3aAdNPwFoCEdAoSFZ8IAwPHV9lChoBkdAcVlRoRIz32gHS/VoCEdAoSGPcrRSg3V9lChoBkdAbcXurp7kXGgHTWoBaAhHQKEiJh73PAx1fZQoaAZHQHJSsifQKKJoB02qAWgIR0ChIjTMA3kxdX2UKGgGR0BvXWdsi0OWaAdNOQFoCEdAoSKcFjd56nV9lChoBkdASXKs+3YthGgHS+BoCEdAoSwtM/QjU3V9lChoBkdAclA3u/k/8mgHTRwBaAhHQKEsevHLidd1fZQoaAZHQG97yHVPN3ZoB00sAWgIR0ChLN+yJKradX2UKGgGR0Bxfvqu8scyaAdNPwFoCEdAoS1yq+8Gs3V9lChoBkdAbh26nzg/DGgHTU0BaAhHQKEtnC+De0p1fZQoaAZHQHCBh8MNMGpoB007AWgIR0ChLa0fozN2dX2UKGgGR0BwlwB4lhPTaAdNUgFoCEdAoS32hEjPfXV9lChoBkdAcAQlQ/HHWGgHTS0BaAhHQKEujvUBnzx1fZQoaAZHQHHKqwD/2kBoB00tAWgIR0ChLsqJ2t+1dX2UKGgGR0BvtjlijL0SaAdNKQFoCEdAoS751Tzd13V9lChoBkdAb8cKa5PM0WgHTRABaAhHQKEvQVYZEUl1fZQoaAZHQHDEcYl6Z6VoB01ZAWgIR0ChL3T6zmfXdX2UKGgGR0BwGvP8hs68aAdNOAFoCEdAoS/bG96C2HV9lChoBkdAU3jC66J66mgHTegDaAhHQKEwLo7FKkF1fZQoaAZHQHCKgBgeA/doB01ZAWgIR0ChMN2kSElFdX2UKGgGR0BuxIT9KmKqaAdNIQFoCEdAoTDkx7AtWnV9lChoBkdAcb0UTL4etGgHTe4BaAhHQKExaI2wV0t1fZQoaAZHQGyNSKekHlhoB01CAWgIR0ChMbJvYODrdX2UKGgGR0BwNIqXnhbXaAdNSwFoCEdAoTJZcmjTKHV9lChoBkdAciIXlr/KhmgHTSgBaAhHQKEzCeU6gdx1fZQoaAZHQG3cjhtLteFoB01UAWgIR0ChM2GOEM9bdX2UKGgGR0BuCBfnfVI7aAdNGwFoCEdAoTOVaEBbOnV9lChoBkdAbVrqRlpXZGgHTVkBaAhHQKEzrOrQw9J1fZQoaAZHQHGd/zSThYNoB00gAWgIR0ChNAJwS8J2dX2UKGgGR0Btad4u9OARaAdNewFoCEdAoTR7haTwD3V9lChoBkdAcHKiG34KyGgHTTMBaAhHQKE0pZA6dUd1fZQoaAZHQG9fsv7FbV1oB00dAWgIR0ChNV4Uvf0mdX2UKGgGR0Bx7jj7yhBaaAdNTwFoCEdAoTWusmv4d3V9lChoBkdAcrl8r7O3UmgHTUMBaAhHQKE1vrO7g891fZQoaAZHQEHEqp97WupoB0vJaAhHQKE2JBHkLhJ1fZQoaAZHQHEL9aY/mkpoB01VAWgIR0ChNsHQQcxTdX2UKGgGR0Bx1Sn0kGA1aAdNPgFoCEdAoTcbk+5e7nV9lChoBkdAcE8Dbah6B2gHTS0BaAhHQKE3bDvVmSR1fZQoaAZHQFLorhR64UhoB0vGaAhHQKE3buBtk4F1fZQoaAZHQDPOmXPZ7HBoB0vqaAhHQKE3x6VMVUN1fZQoaAZHQHDBkx/NJOFoB00YAWgIR0ChN9d6Tnq3dX2UKGgGR0BtzKPQv6CUaAdNSAFoCEdAoTkS8xsVL3V9lChoBkdAbtNB7/n4f2gHTR8BaAhHQKE5GFNcnmd1fZQoaAZHQHDpQ7YChexoB0vzaAhHQKE5rF5v9+B1fZQoaAZHQHK80RBeHBVoB00vAWgIR0ChOcDAzpHJdX2UKGgGR0BrIr+m3vx6aAdNWwFoCEdAoTnKISDh+HV9lChoBkdAcX2su3+db2gHTSgBaAhHQKE6TSncclx1fZQoaAZHQHERt5hScb1oB01OAWgIR0ChOmILofSydX2UKGgGR0BxlScawUxmaAdNKQFoCEdAoTqTbDdgv3V9lChoBkdAcK01jy4FzWgHTVoBaAhHQKE7qHUMG5d1fZQoaAZHQG84nh86V+toB00gAWgIR0ChO8RUm2LHdX2UKGgGR0BwnZD7ZWaMaAdNaQJoCEdAoTv7GR3eN3V9lChoBkdAb0v2W6bvw2gHTQ4BaAhHQKE8M45Lh751fZQoaAZHQG+1UvGp++doB00tAWgIR0ChPFH3lCC0dX2UKGgGR0ByT7VrhzeXaAdNWwFoCEdAoTxggieNDXV9lChoBkdAbnOPvrnkk2gHTSUBaAhHQKE8lWQwK0F1fZQoaAZHQHFKGcvugHxoB01NAWgIR0ChPMDNyHVPdX2UKGgGR0BxFB80DU3GaAdNHAFoCEdAoT2J4bCJoHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8d94b915dc0af39f10141f1b590a30e5624221465f24cad42835096447332194
3
- size 148076
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c6e17f8f5e49d8dc061f3ed6a3bde724a049e8dfaf42ed6beb980079306793e
3
+ size 148080
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7b4784ff9990>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b4784ff9a20>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b4784ff9ab0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b4784ff9b40>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7b4784ff9bd0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7b4784ff9c60>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b4784ff9cf0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b4784ff9d80>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7b4784ff9e10>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b4784ff9ea0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b4784ff9f30>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b4784ff9fc0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7b4784f92500>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,16 +26,16 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1714493292423303211,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANr1SL5YpMY+m4ptPo3lVr6XLcE8BjCVvAAAAAAAAAAAxs8hvh/ReT8WHZE83hG8vsExYL1c5Qw6AAAAAAAAAACmc4G9tdmcPueyDr6/EYu+skDSvW9vEz0AAAAAAAAAAE0uc72PCm+6ji+hO5ByHDiwnia7QvnRtwAAgD8AAIA/zeAnPOyM57uqsUg8a8KTPAXVSr2YDng9AACAPwAAgD8zu9E7wxdjvG7ukT1Zlty948uevYLN274AAIA/AACAP+bpGr04loQ/XlICvmfhtb4nKGC91300vQAAAAAAAAAAZlpKvTb4f7wXOQc+sg3Vve9yzTy25To9AACAPwAAgD/NYey9YGcQP9J1uT0ZFD2+oVCTuxQhhT0AAAAAAAAAADN7WT2P3gq6b+aPs2ZHiK71CsE59bmvMwAAgD8AAIA/ZpbRulz7YbrugjC6T5MYtTiLzrkTzk45AACAPwAAgD9NIgy9aaz9PjvDzr0Fjam+DD+vvSb7tboAAAAAAAAAAPNUor0zRr4/qqkCv4QMhz1NVly92ryRvgAAAAAAAAAAAMBgPLcYCT+2RYI8/W50vjXoCT3wP9e9AAAAAAAAAADNbMK8w5kvupJvOTn/AKA0Io3BOlPxVLgAAIA/AACAP7NPD73hPIG6RQNdN/XgSTIwHx+6XiSBtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+brbYbsGCMAWyUTUIBjAF0lEdAkjN+MuOCG3V9lChoBkdAcB4Hn2ZiNWgHTVcBaAhHQJIzvj0cwQF1fZQoaAZHQHEKqOHWSU1oB00hAWgIR0CSM+naWX1KdX2UKGgGR0Bzc5cqvvBraAdNPgFoCEdAkjP/JV81GnV9lChoBkdAbBJOuaF23mgHTRUBaAhHQJI01Oymhuh1fZQoaAZHQHDldR3u/lBoB01XAWgIR0CSNmU1hsqKdX2UKGgGR0ByK2XHBDXwaAdL+2gIR0CSNmradtl7dX2UKGgGR0BvhcwWWQfZaAdNMAFoCEdAkjccJMQEp3V9lChoBkdAcEO2vjfelGgHTSoBaAhHQJI3Qy57PY51fZQoaAZHQHImf/7zkIZoB00+AWgIR0CSN988La24dX2UKGgGR0BuhB5gPVd5aAdNKQFoCEdAkjgD+zdDY3V9lChoBkdAULe10DEFXGgHS9FoCEdAkjmKcqe9SXV9lChoBkdAcU7t9hJAdGgHTSoBaAhHQJI6QcebNKR1fZQoaAZHQHIFNjLB9CxoB00sAWgIR0CSOwGT9sJqdX2UKGgGR0BwJpyNn5BUaAdNJQFoCEdAkjw0UO/cnHV9lChoBkdAcqHxBVuJlGgHTTEBaAhHQJI8eij+Jgt1fZQoaAZHQHD79fG+9J1oB00gAWgIR0CSPYWMju8cdX2UKGgGR0By2uMaS9uhaAdNIAFoCEdAkj2p0jkdWHV9lChoBkdAcoup84Pwu2gHTTkBaAhHQJI983Ov+wV1fZQoaAZHQHE3OuRs/INoB01gAWgIR0CSQBnP3SKFdX2UKGgGR0BtxlzhgmZ3aAdNEAFoCEdAkkCpYcNpd3V9lChoBkdAcTqLS/j81mgHTSUBaAhHQJJBVBKL8791fZQoaAZHQHCfzWf9P1toB01pAWgIR0CSQcd1uBMBdX2UKGgGR0Bz71q+JxecaAdNAQFoCEdAkkHoUFjd6HV9lChoBkdAcRead+Xqq2gHTUQBaAhHQJJC6Dxsl9l1fZQoaAZHQHGknai9IwxoB000AWgIR0CSQzPSUkfLdX2UKGgGR0Bw5UA4n4O+aAdNYQFoCEdAkkPYXsPatnV9lChoBkdAcL/WTX8O1GgHTTMBaAhHQJJEs8kleGB1fZQoaAZHQFLsEi+tbLVoB0vTaAhHQJJEvVYp2EF1fZQoaAZHQHKI9WMju8doB00lAWgIR0CSRMmrbQC0dX2UKGgGR0ByhnskY4yXaAdNRAFoCEdAkkYjUqhDgXV9lChoBkdAcf3raM72c2gHTToBaAhHQJJGq6ClJpZ1fZQoaAZHQGzMwNLDhtNoB00aAWgIR0CSRtM5OrQxdX2UKGgGR0ByDeNgjQiSaAdNMgFoCEdAkkewzUI9knV9lChoBkdAby7SF49ovmgHTSMBaAhHQJJJQnb7CSB1fZQoaAZHQG6Welj3EhtoB00+AWgIR0CSSbsenyd4dX2UKGgGR0Bx3ozqKP4maAdNlwFoCEdAkknaPjn3c3V9lChoBkdAcXTUsnRb8mgHTSoBaAhHQJJKM50bLlp1fZQoaAZHQHAu7Tc6/7BoB0v9aAhHQJJKyvNeMQ51fZQoaAZHQG+8sb3oLXtoB00/AWgIR0CSS0etSydGdX2UKGgGR0BxY2pm29csaAdNPAFoCEdAkktUO/cnE3V9lChoBkdAcqp9LHuJDWgHTSkBaAhHQJJLxcpsoDx1fZQoaAZHQHDpWTot+ThoB00uAWgIR0CSTOgBcRlIdX2UKGgGR0ByGpA3T/hmaAdNEgFoCEdAkkzxeC04R3V9lChoBkdAbT+wM6RyO2gHTTwBaAhHQJJONjwx33Z1fZQoaAZHQG9kIoNNJvpoB00fAWgIR0CSTtYfnwG4dX2UKGgGR0BxdtUT+NtJaAdNEAFoCEdAkk8VVghKUXV9lChoBkdAbw4RGMGX5WgHTWsBaAhHQJJPjC1qnFZ1fZQoaAZHQHDLHuy/sVtoB006AWgIR0CSUCY1YQrddX2UKGgGR0ByUIzAN5MUaAdNLAFoCEdAklDV50KZ2XV9lChoBkdAci65fdAPd2gHTQcBaAhHQJJRHvoePq91fZQoaAZHQHEIt6ol2NhoB00uAWgIR0CSZBP69CeFdX2UKGgGR0BCFsANoakzaAdL8WgIR0CSZDEJ0GNadX2UKGgGR0BslYSrYGt7aAdNJgFoCEdAkmV2gi/wiXV9lChoBkdAcEUqlxffGmgHTU8BaAhHQJJlqy2QXAN1fZQoaAZHQHGT05+6RQtoB00qAWgIR0CSZauuzQeFdX2UKGgGR0Bw1NSR8twraAdNOwFoCEdAkmWp5AyEc3V9lChoBkdAcKjulGgBcWgHTXYBaAhHQJJmWYCyQgd1fZQoaAZHQG0TQZ4wAVBoB00lAWgIR0CSZyhttQ9BdX2UKGgGR0BRFFSn+AEuaAdL/mgIR0CSZ0zS1E3LdX2UKGgGR0Bwra+sYEW7aAdNLwFoCEdAkmdopx3mm3V9lChoBkdAcl1OxSpBHGgHTQMBaAhHQJJoonPVurJ1fZQoaAZHQHLp5VfeDWdoB01LAWgIR0CSaq2oNutPdX2UKGgGR0Bx+f1SOzY3aAdNSgFoCEdAkmylKTSssHV9lChoBkdAcH4TAFgUlGgHTToBaAhHQJJs6oZQ53l1fZQoaAZHQHDYhMzuWrxoB00+AWgIR0CSbYoIfKZEdX2UKGgGR0BxK5Ev0yxiaAdNKwFoCEdAkm9RUFSsKnV9lChoBkdAcZPinYQJ5WgHTUEBaAhHQJJwh+QU5+91fZQoaAZHQHE5JUcXFcZoB01IAWgIR0CSckGhVU++dX2UKGgGR0BxBpDYywfRaAdNRwFoCEdAknJuRYA80XV9lChoBkdAb2cPq9oN/mgHTU0BaAhHQJJyqtITXat1fZQoaAZHQHEQ2znied1oB00vAWgIR0CSc5Nc4YJmdX2UKGgGR0BxJR0o0ALiaAdNbQFoCEdAknPD0QK8c3V9lChoBkdAcMIlWOp84WgHTTUBaAhHQJJz7C3w1BN1fZQoaAZHQG8hKQzUI9loB01KAWgIR0CSdEzl90A+dX2UKGgGR0BwdTdcjZ+QaAdNgQFoCEdAknUbobGWEHV9lChoBkdAcNqaJhvzfGgHTSABaAhHQJJ2HQPZqVR1fZQoaAZHQG5Ep6IFeOZoB014AWgIR0CSd1u4gA6udX2UKGgGR0Bx1FbW3BpIaAdNIgFoCEdAkneOl0o0AXV9lChoBkdAb1Qhje9BbGgHTRMBaAhHQJJ48078vVV1fZQoaAZHQHKmcc6vJRxoB01VAWgIR0CSegbbDdgwdX2UKGgGR0ByI71f3N9qaAdNhQFoCEdAkntV5B1LanV9lChoBkdAcHUE2YOUdWgHTSIBaAhHQJJ8EeyRjjJ1fZQoaAZHQG0pmXw9aEBoB00mAWgIR0CSfGgXuVopdX2UKGgGR0BwZYEU0vXcaAdNRgFoCEdAkn3VYlpoK3V9lChoBkdAb/aox59mYmgHTSEBaAhHQJJ90+fRNRF1fZQoaAZHQG4x0gSvkiloB00ZAWgIR0CSfftNBWxRdX2UKGgGR0BVjjMqz7djaAdLtWgIR0CSfiupjtojdX2UKGgGR0BwUFWZJCjUaAdNOQFoCEdAkn5LCN0eVHV9lChoBkdAb6w4kNWluWgHTTwBaAhHQJJ+jHU+cH51fZQoaAZHQG5DXs5XEIhoB00KAWgIR0CSf1Wkadc0dX2UKGgGR0ByhqPo3aSLaAdNTgFoCEdAkoBdXko4MnV9lChoBkdAcfIF7D2rXGgHTdcBaAhHQJKAnUtqYZ51fZQoaAZHQG8vwJgLJCBoB00pAWgIR0CSgWarFOwgdX2UKGgGR0Byon/ffoA5aAdNCQFoCEdAkoHkzwc5sHV9lChoBkdAceeY7JW/8GgHS/poCEdAkoJOOjqOcXV9lChoBkdAYAMyDZlFt2gHTegDaAhHQJKC7cWTHKh1fZQoaAZHQHI+HryDqW1oB0vwaAhHQJKDgX+ERJ51fZQoaAZHQG3cOeJ53TxoB00sAWgIR0CShLeYlY2bdX2UKGgGR0BysA6kqMFVaAdNMgFoCEdAkoXM1n/T9nVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bafca38add0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bafca38ae60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bafca38aef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bafca38af80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bafca38b010>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bafca38b0a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bafca38b130>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bafca38b1c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bafca38b250>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bafca38b2e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bafca38b370>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bafca38b400>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bafca390f80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1714498066153674942,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM22xT01hX4/G8LNPb7mor6bMTo9S1suvQAAAAAAAAAAAHBavDA1+j5hs6W98nNavuaUGDuIQ4C7AAAAAAAAAABaqTe+iXgOP9o/Mz7i9Hy+TY6tvDiBJzsAAAAAAAAAABLblL5DZEg/KvoIPt21k768wS2+pg55PgAAAAAAAAAAc6OHvT1dJ7tNkFu9lSFivnQD2TovVic9AAAAAAAAAAAAhfY9bGt6P0gz2z0s+rO+ES3ePcJ1hbsAAAAAAAAAAMB9uj2kd067TZWeu8UFlDxpEIo8EhJ+vQAAgD8AAIA/M0QvPaS7H7ti5VS8R3iVPDWiWjxyv4C9AACAPwAAgD/m0gG96zBdP4eeFrzWrsG+cEhevTuz7z0AAAAAAAAAAJohqrsSHbQ/lqEGv1EwLL5jXMU7uPfzPQAAAAAAAAAAM3BDPaGBxLwboA69sd77vBqyKr4sC8S9AACAPwAAgD8a61o9OLKOPepO7r2t1CO+sOu5vRKZEj0AAAAAAAAAAGYBJz2jVHI9p6SYvfYZL758USq8lEI2PQAAAAAAAAAA2urFPf82MT89z3w9ogGAvnfXqD0BZYc9AAAAAAAAAAAzz8I86eA1P8hV1bvhn6K+mVkHveMXI70AAAAAAAAAACYZ4j0/AyI+tSnbvecSl76f3oE8kILsPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKgsOLBKtiMAWyUTT8BjAF0lEdAoQaSFAVwgnV9lChoBkdAcpNuLJjlP2gHTbsBaAhHQKEGuPI4lyB1fZQoaAZHQHD9KHXVbzNoB00rAWgIR0ChD9RjSXt0dX2UKGgGR0ByHgakyk9EaAdNVwFoCEdAoRBiDbrTpnV9lChoBkdAcbMXlr/KhmgHTSQBaAhHQKESKHTqjah1fZQoaAZHQHEq2FSKm9BoB00oAWgIR0ChEyIl2NeddX2UKGgGR0BvD8EC/47BaAdNUgFoCEdAoRNOOS4e93V9lChoBkdAbcS//NqxkmgHTTMBaAhHQKETgGxD9fl1fZQoaAZHQHKl/nfVI7NoB01cAWgIR0ChE8jVH4GmdX2UKGgGR0Bws2WhRIjGaAdNLgFoCEdAoRQLeZXuE3V9lChoBkdAbVnoQnQY12gHTVkBaAhHQKEUEdlum791fZQoaAZHQG2bhrFfiP1oB01mAWgIR0ChFCQYDTz/dX2UKGgGR0Bw+ysuFpPAaAdNRwFoCEdAoRU2NJe3QXV9lChoBkdAcBHXPZ7HAGgHTTIBaAhHQKEVhnjABT51fZQoaAZHQG4Mj/2kBS1oB01FAWgIR0ChFbGkep4sdX2UKGgGR0Byt3BBRhttaAdNWAFoCEdAoRX1o+Ofd3V9lChoBkdAcMj8FINEw2gHTUwBaAhHQKEWlb+tKZl1fZQoaAZHQG/XJh4MWoFoB008AWgIR0ChFuCv5gw5dX2UKGgGR0ByRQKNQ0oCaAdNBAFoCEdAoRkkCJXQt3V9lChoBkdAb7Fwtrbg0mgHTQMBaAhHQKEZJLRrrPd1fZQoaAZHQHA9Vpfx+a1oB01VAWgIR0ChGTvPcBU8dX2UKGgGR0BwrDnied08aAdNNwFoCEdAoRmaKk2xZHV9lChoBkdAcFurzXjEN2gHTUQBaAhHQKEZvffoA4p1fZQoaAZHQHCSt7jT8YRoB00hAWgIR0ChGeWLYPGydX2UKGgGR0BwwmD3/PxAaAdNLwFoCEdAoRnmk+HJtHV9lChoBkdAcFCq4pc5bWgHTUMBaAhHQKEaJZid8Rd1fZQoaAZHQGDlbTlT3qRoB03oA2gIR0ChGzxIBikPdX2UKGgGR0BxBr73wkPdaAdNIgFoCEdAoRt3qZ+hG3V9lChoBkdARL5E+gUUPGgHTQ0BaAhHQKEbh1p0wJx1fZQoaAZHQHCUES7GvOhoB01AAWgIR0ChHC8mjTKDdX2UKGgGR0BxXrOHFglXaAdNMgFoCEdAoRz0G9pRGnV9lChoBkdAbp1LBbfP5mgHTSYBaAhHQKEdD5bhWHV1fZQoaAZHQG8HuxjawlloB00dAWgIR0ChHz1qveP8dX2UKGgGR0BPQ9l/YrauaAdN6ANoCEdAoR9hlOGj9HV9lChoBkdAclxx82JizGgHTTABaAhHQKEfivnKW9l1fZQoaAZHQHDUDdDYywhoB002AWgIR0ChH6dbX6IndX2UKGgGR0BwrfavicXnaAdNKwFoCEdAoR/cz9CNTHV9lChoBkdAcndcxj8UEmgHTSoBaAhHQKEf8seXAuZ1fZQoaAZHQHHFUEX+ERJoB00qAWgIR0ChIAiJwbVCdX2UKGgGR0BsyhKaoddWaAdNXwFoCEdAoSDqHbh3q3V9lChoBkdAbT1A2ycCo2gHTSEBaAhHQKEhE7rcCYF1fZQoaAZHQHA/JEhJRO1oB00LAWgIR0ChIVK+SKWLdX2UKGgGR0BxRUtcv/R3aAdNPwFoCEdAoSFZ8IAwPHV9lChoBkdAcVlRoRIz32gHS/VoCEdAoSGPcrRSg3V9lChoBkdAbcXurp7kXGgHTWoBaAhHQKEiJh73PAx1fZQoaAZHQHJSsifQKKJoB02qAWgIR0ChIjTMA3kxdX2UKGgGR0BvXWdsi0OWaAdNOQFoCEdAoSKcFjd56nV9lChoBkdASXKs+3YthGgHS+BoCEdAoSwtM/QjU3V9lChoBkdAclA3u/k/8mgHTRwBaAhHQKEsevHLidd1fZQoaAZHQG97yHVPN3ZoB00sAWgIR0ChLN+yJKradX2UKGgGR0Bxfvqu8scyaAdNPwFoCEdAoS1yq+8Gs3V9lChoBkdAbh26nzg/DGgHTU0BaAhHQKEtnC+De0p1fZQoaAZHQHCBh8MNMGpoB007AWgIR0ChLa0fozN2dX2UKGgGR0BwlwB4lhPTaAdNUgFoCEdAoS32hEjPfXV9lChoBkdAcAQlQ/HHWGgHTS0BaAhHQKEujvUBnzx1fZQoaAZHQHHKqwD/2kBoB00tAWgIR0ChLsqJ2t+1dX2UKGgGR0BvtjlijL0SaAdNKQFoCEdAoS751Tzd13V9lChoBkdAb8cKa5PM0WgHTRABaAhHQKEvQVYZEUl1fZQoaAZHQHDEcYl6Z6VoB01ZAWgIR0ChL3T6zmfXdX2UKGgGR0BwGvP8hs68aAdNOAFoCEdAoS/bG96C2HV9lChoBkdAU3jC66J66mgHTegDaAhHQKEwLo7FKkF1fZQoaAZHQHCKgBgeA/doB01ZAWgIR0ChMN2kSElFdX2UKGgGR0BuxIT9KmKqaAdNIQFoCEdAoTDkx7AtWnV9lChoBkdAcb0UTL4etGgHTe4BaAhHQKExaI2wV0t1fZQoaAZHQGyNSKekHlhoB01CAWgIR0ChMbJvYODrdX2UKGgGR0BwNIqXnhbXaAdNSwFoCEdAoTJZcmjTKHV9lChoBkdAciIXlr/KhmgHTSgBaAhHQKEzCeU6gdx1fZQoaAZHQG3cjhtLteFoB01UAWgIR0ChM2GOEM9bdX2UKGgGR0BuCBfnfVI7aAdNGwFoCEdAoTOVaEBbOnV9lChoBkdAbVrqRlpXZGgHTVkBaAhHQKEzrOrQw9J1fZQoaAZHQHGd/zSThYNoB00gAWgIR0ChNAJwS8J2dX2UKGgGR0Btad4u9OARaAdNewFoCEdAoTR7haTwD3V9lChoBkdAcHKiG34KyGgHTTMBaAhHQKE0pZA6dUd1fZQoaAZHQG9fsv7FbV1oB00dAWgIR0ChNV4Uvf0mdX2UKGgGR0Bx7jj7yhBaaAdNTwFoCEdAoTWusmv4d3V9lChoBkdAcrl8r7O3UmgHTUMBaAhHQKE1vrO7g891fZQoaAZHQEHEqp97WupoB0vJaAhHQKE2JBHkLhJ1fZQoaAZHQHEL9aY/mkpoB01VAWgIR0ChNsHQQcxTdX2UKGgGR0Bx1Sn0kGA1aAdNPgFoCEdAoTcbk+5e7nV9lChoBkdAcE8Dbah6B2gHTS0BaAhHQKE3bDvVmSR1fZQoaAZHQFLorhR64UhoB0vGaAhHQKE3buBtk4F1fZQoaAZHQDPOmXPZ7HBoB0vqaAhHQKE3x6VMVUN1fZQoaAZHQHDBkx/NJOFoB00YAWgIR0ChN9d6Tnq3dX2UKGgGR0BtzKPQv6CUaAdNSAFoCEdAoTkS8xsVL3V9lChoBkdAbtNB7/n4f2gHTR8BaAhHQKE5GFNcnmd1fZQoaAZHQHDpQ7YChexoB0vzaAhHQKE5rF5v9+B1fZQoaAZHQHK80RBeHBVoB00vAWgIR0ChOcDAzpHJdX2UKGgGR0BrIr+m3vx6aAdNWwFoCEdAoTnKISDh+HV9lChoBkdAcX2su3+db2gHTSgBaAhHQKE6TSncclx1fZQoaAZHQHERt5hScb1oB01OAWgIR0ChOmILofSydX2UKGgGR0BxlScawUxmaAdNKQFoCEdAoTqTbDdgv3V9lChoBkdAcK01jy4FzWgHTVoBaAhHQKE7qHUMG5d1fZQoaAZHQG84nh86V+toB00gAWgIR0ChO8RUm2LHdX2UKGgGR0BwnZD7ZWaMaAdNaQJoCEdAoTv7GR3eN3V9lChoBkdAb0v2W6bvw2gHTQ4BaAhHQKE8M45Lh751fZQoaAZHQG+1UvGp++doB00tAWgIR0ChPFH3lCC0dX2UKGgGR0ByT7VrhzeXaAdNWwFoCEdAoTxggieNDXV9lChoBkdAbnOPvrnkk2gHTSUBaAhHQKE8lWQwK0F1fZQoaAZHQHFKGcvugHxoB01NAWgIR0ChPMDNyHVPdX2UKGgGR0BxFB80DU3GaAdNHAFoCEdAoT2J4bCJoHVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cfb3d1dfc8b9269eceb752d4da1cd71e5ea3c2b5e931ce78661296de2a7c8f4b
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2174f41005ddb7a9750c86ae17557ccfd930b9c4499e90edc3af3f5ce77fa6a6
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7dc938e46f56bc9124f936a76030091d01a9b5c92e5775edc5792a795d7acb39
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4332c9c641e8e06d768f8b70a3679d9f51100e857e4283b1018e577fb886f11
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 252.57857080000002, "std_reward": 22.088133421130646, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-30T16:35:53.985497"}
 
1
+ {"mean_reward": 251.16565979999996, "std_reward": 22.978264949102915, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-30T17:58:43.656105"}