PommesPeter
commited on
Commit
•
90c42dc
1
Parent(s):
6732f75
Update README.md
Browse files
README.md
CHANGED
@@ -1,15 +1,17 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
4 |
-
|
5 |
<p align="center">
|
6 |
-
<img src="
|
7 |
<br>
|
8 |
</p>
|
9 |
|
10 |
# Lumina-T2I
|
11 |
|
12 |
-
Lumina-T2I is a model that generates images
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
## 📰 News
|
15 |
|
@@ -21,13 +23,7 @@ More checkpoints of our model will be released soon~
|
|
21 |
|
22 |
| Resolution | Flag-DiT Parameter| Text Encoder | Prediction | Download URL |
|
23 |
| ---------- | ----------------------- | ------------ | -----------|-------------- |
|
24 |
-
| 1024 | 5B | LLaMa-7B | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-
|
25 |
-
|
26 |
-
Using git for cloning the model you want to use:
|
27 |
-
|
28 |
-
```bash
|
29 |
-
git clone https://huggingface.co/Alpha-VLLM/Lumina-T2I
|
30 |
-
```
|
31 |
|
32 |
## Installation
|
33 |
|
@@ -47,6 +43,12 @@ On some outdated distros (e.g., CentOS 7), you may also want to check that a lat
|
|
47 |
gcc --version
|
48 |
```
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
### 1. Create a conda environment and install PyTorch
|
51 |
|
52 |
Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).
|
@@ -66,7 +68,7 @@ Note: You may want to adjust the CUDA version [according to your driver version]
|
|
66 |
or you can use
|
67 |
|
68 |
```bash
|
69 |
-
cd
|
70 |
pip install -r requirements.txt
|
71 |
```
|
72 |
|
@@ -105,7 +107,7 @@ pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation -
|
|
105 |
|
106 |
## Inference
|
107 |
|
108 |
-
To ensure that our generative model is ready to use
|
109 |
|
110 |
### CLI
|
111 |
|
@@ -115,17 +117,33 @@ To ensure that our generative model is ready to use right out of the box, we pro
|
|
115 |
pip install -e .
|
116 |
```
|
117 |
|
118 |
-
2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure:
|
121 |
|
|
|
|
|
122 |
```yaml
|
123 |
- settings:
|
124 |
|
125 |
model:
|
126 |
-
ckpt: ""
|
127 |
-
ckpt_lm: ""
|
128 |
-
token: ""
|
129 |
|
130 |
transport:
|
131 |
path_type: "Linear" # option: ["Linear", "GVP", "VP"]
|
|
|
|
|
|
|
|
|
|
|
1 |
<p align="center">
|
2 |
+
<img src="../assets/lumina-logo.png" width="30%"/>
|
3 |
<br>
|
4 |
</p>
|
5 |
|
6 |
# Lumina-T2I
|
7 |
|
8 |
+
Lumina-T2I is a model that generates images based on text conditions, supporting various text encoders and models of different parameter sizes. With minimal training costs, it achieves high-quality image generation by training from scratch. Additionally, it offers usage through CLI console programs and Web Demo displays.
|
9 |
+
|
10 |
+
Our generative model has `LargeDiT` as the backbone, the text encoder is the `LLaMa` 7B model, and the VAE uses a version of `sdxl` fine-tuned by stabilityai.
|
11 |
+
|
12 |
+
- Generation Model: Large-DiT
|
13 |
+
- Text Encoder: LLaMa-7B
|
14 |
+
- VAE: stabilityai/sd-vae-ft-sdxl
|
15 |
|
16 |
## 📰 News
|
17 |
|
|
|
23 |
|
24 |
| Resolution | Flag-DiT Parameter| Text Encoder | Prediction | Download URL |
|
25 |
| ---------- | ----------------------- | ------------ | -----------|-------------- |
|
26 |
+
| 1024 | 5B | LLaMa-7B | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-T2I) |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
## Installation
|
29 |
|
|
|
43 |
gcc --version
|
44 |
```
|
45 |
|
46 |
+
Downloading Lumina-T2X repo from github:
|
47 |
+
|
48 |
+
```bash
|
49 |
+
git clone https://github.com/Alpha-VLLM/Lumina-T2X
|
50 |
+
```
|
51 |
+
|
52 |
### 1. Create a conda environment and install PyTorch
|
53 |
|
54 |
Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).
|
|
|
68 |
or you can use
|
69 |
|
70 |
```bash
|
71 |
+
cd lumina-t2i
|
72 |
pip install -r requirements.txt
|
73 |
```
|
74 |
|
|
|
107 |
|
108 |
## Inference
|
109 |
|
110 |
+
To ensure that our generative model is ready to use immediately, we provide a user-friendly CLI program and a locally deployable Web Demo site.
|
111 |
|
112 |
### CLI
|
113 |
|
|
|
117 |
pip install -e .
|
118 |
```
|
119 |
|
120 |
+
2. Prepare the pre-trained model
|
121 |
+
|
122 |
+
⭐⭐ (Recommended) you can use huggingface_cli to download our model:
|
123 |
+
|
124 |
+
```bash
|
125 |
+
huggingface-cli download --resume-download Alpha-VLLM/Lumina-T2I --local-dir /path/to/ckpt
|
126 |
+
```
|
127 |
+
|
128 |
+
or using git for cloning the model you want to use:
|
129 |
+
|
130 |
+
```bash
|
131 |
+
git clone https://huggingface.co/Alpha-VLLM/Lumina-T2I
|
132 |
+
```
|
133 |
+
|
134 |
+
1. Setting your personal inference configuration
|
135 |
|
136 |
Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure:
|
137 |
|
138 |
+
> `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`
|
139 |
+
|
140 |
```yaml
|
141 |
- settings:
|
142 |
|
143 |
model:
|
144 |
+
ckpt: "/path/to/ckpt" # if ckpt is "", you should use `--ckpt` for passing model path when using `lumina` cli.
|
145 |
+
ckpt_lm: "" # if ckpt is "", you should use `--ckpt_lm` for passing model path when using `lumina` cli.
|
146 |
+
token: "" # if LLM is a huggingface gated repo, you should input your access token from huggingface and when token is "", you should `--token` for accessing the model.
|
147 |
|
148 |
transport:
|
149 |
path_type: "Linear" # option: ["Linear", "GVP", "VP"]
|