PommesPeter commited on
Commit
90c42dc
1 Parent(s): 6732f75

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -19
README.md CHANGED
@@ -1,15 +1,17 @@
1
- ---
2
- license: apache-2.0
3
- ---
4
-
5
  <p align="center">
6
- <img src="./lumina-logo.png" width="30%"/>
7
  <br>
8
  </p>
9
 
10
  # Lumina-T2I
11
 
12
- Lumina-T2I is a model that generates images base on text condition, supporting various text encoders and models of different parameter sizes. With minimal training costs, it achieves high-quality image generation by training from scratch. Additionally, it offers usage through CLI console programs and Web Demo displays.
 
 
 
 
 
 
13
 
14
  ## 📰 News
15
 
@@ -21,13 +23,7 @@ More checkpoints of our model will be released soon~
21
 
22
  | Resolution | Flag-DiT Parameter| Text Encoder | Prediction | Download URL |
23
  | ---------- | ----------------------- | ------------ | -----------|-------------- |
24
- | 1024 | 5B | LLaMa-7B | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-T2X/tree/main/Lumina-T2I/5B/1024px) |
25
-
26
- Using git for cloning the model you want to use:
27
-
28
- ```bash
29
- git clone https://huggingface.co/Alpha-VLLM/Lumina-T2I
30
- ```
31
 
32
  ## Installation
33
 
@@ -47,6 +43,12 @@ On some outdated distros (e.g., CentOS 7), you may also want to check that a lat
47
  gcc --version
48
  ```
49
 
 
 
 
 
 
 
50
  ### 1. Create a conda environment and install PyTorch
51
 
52
  Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).
@@ -66,7 +68,7 @@ Note: You may want to adjust the CUDA version [according to your driver version]
66
  or you can use
67
 
68
  ```bash
69
- cd Lumina-T2I
70
  pip install -r requirements.txt
71
  ```
72
 
@@ -105,7 +107,7 @@ pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation -
105
 
106
  ## Inference
107
 
108
- To ensure that our generative model is ready to use right out of the box, we provide a user-friendly CLI program and a locally deployable Web Demo site.
109
 
110
  ### CLI
111
 
@@ -115,17 +117,33 @@ To ensure that our generative model is ready to use right out of the box, we pro
115
  pip install -e .
116
  ```
117
 
118
- 2. Setting your personal inference configuration
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
  Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure:
121
 
 
 
122
  ```yaml
123
  - settings:
124
 
125
  model:
126
- ckpt: ""
127
- ckpt_lm: ""
128
- token: ""
129
 
130
  transport:
131
  path_type: "Linear" # option: ["Linear", "GVP", "VP"]
 
 
 
 
 
1
  <p align="center">
2
+ <img src="../assets/lumina-logo.png" width="30%"/>
3
  <br>
4
  </p>
5
 
6
  # Lumina-T2I
7
 
8
+ Lumina-T2I is a model that generates images based on text conditions, supporting various text encoders and models of different parameter sizes. With minimal training costs, it achieves high-quality image generation by training from scratch. Additionally, it offers usage through CLI console programs and Web Demo displays.
9
+
10
+ Our generative model has `LargeDiT` as the backbone, the text encoder is the `LLaMa` 7B model, and the VAE uses a version of `sdxl` fine-tuned by stabilityai.
11
+
12
+ - Generation Model: Large-DiT
13
+ - Text Encoder: LLaMa-7B
14
+ - VAE: stabilityai/sd-vae-ft-sdxl
15
 
16
  ## 📰 News
17
 
 
23
 
24
  | Resolution | Flag-DiT Parameter| Text Encoder | Prediction | Download URL |
25
  | ---------- | ----------------------- | ------------ | -----------|-------------- |
26
+ | 1024 | 5B | LLaMa-7B | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-T2I) |
 
 
 
 
 
 
27
 
28
  ## Installation
29
 
 
43
  gcc --version
44
  ```
45
 
46
+ Downloading Lumina-T2X repo from github:
47
+
48
+ ```bash
49
+ git clone https://github.com/Alpha-VLLM/Lumina-T2X
50
+ ```
51
+
52
  ### 1. Create a conda environment and install PyTorch
53
 
54
  Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).
 
68
  or you can use
69
 
70
  ```bash
71
+ cd lumina-t2i
72
  pip install -r requirements.txt
73
  ```
74
 
 
107
 
108
  ## Inference
109
 
110
+ To ensure that our generative model is ready to use immediately, we provide a user-friendly CLI program and a locally deployable Web Demo site.
111
 
112
  ### CLI
113
 
 
117
  pip install -e .
118
  ```
119
 
120
+ 2. Prepare the pre-trained model
121
+
122
+ ⭐⭐ (Recommended) you can use huggingface_cli to download our model:
123
+
124
+ ```bash
125
+ huggingface-cli download --resume-download Alpha-VLLM/Lumina-T2I --local-dir /path/to/ckpt
126
+ ```
127
+
128
+ or using git for cloning the model you want to use:
129
+
130
+ ```bash
131
+ git clone https://huggingface.co/Alpha-VLLM/Lumina-T2I
132
+ ```
133
+
134
+ 1. Setting your personal inference configuration
135
 
136
  Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure:
137
 
138
+ > `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`
139
+
140
  ```yaml
141
  - settings:
142
 
143
  model:
144
+ ckpt: "/path/to/ckpt" # if ckpt is "", you should use `--ckpt` for passing model path when using `lumina` cli.
145
+ ckpt_lm: "" # if ckpt is "", you should use `--ckpt_lm` for passing model path when using `lumina` cli.
146
+ token: "" # if LLM is a huggingface gated repo, you should input your access token from huggingface and when token is "", you should `--token` for accessing the model.
147
 
148
  transport:
149
  path_type: "Linear" # option: ["Linear", "GVP", "VP"]