Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1859.98 +/- 54.45
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dafb3074404d79f2e43a4b6bd6d26cbb93c06c8cba7dcda525523f7bfcc6a828
|
3 |
+
size 128940
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f45d92a8b00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45d92a8b90>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45d92a8c20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45d92a8cb0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f45d92a8d40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f45d92a8dd0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45d92a8e60>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f45d92a8ef0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45d92a8f80>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45d92af050>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45d92af0e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f45d927a660>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1665456396450604829,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAHU03PhYKnT7MUQ0/9FqVP64YUL++rZ+/eoAJvj+Cir6Bzxg/i0w9vUefD7/RBjXAQ6fIvitJkT9WMHE9WulbP3cesb5K8ao/X+xvPe6JrL9qrfk+jLmHP399BT8E8CRAtROFvze19T57YQo/maKLv3eUPz7++d09/+gRPzmehz+/05e/HPRuvpXHeD++8Ii9/2obP8Q8Ar4o0X0/EjSiv1Q9oL/Kt4A/h29ivytGvb/wsIq/L60TP1imDT8H+bC/AwF6vUTu+T8KZyC/giCdP8E7dj+TXAXAe2EKP5mii78QdPe+RYzAPsHGCT+YiYM/BpUFwBn6yr8b++Q+HQCRPhJSKj82rBe/bZVEPVsy1b/iyYS/vZMTP19fnL6FAfY+ue+mv8W6PT4S8Mw+DZHjvx1QwjxOzPU+OVjsvirowj/BO3Y/N7X1PnthCj+Zoou/kNeCvsVBJL5jHAs/+rudPzyP1r7ITG6+HRNUP0N0nj49GhY/9Y0TvsZ71z6/Sti/hnOHv1qPiT8Mdkc+0Y1Gv4Trdr+ezmc/ws/iPqjBs7/TNhO+djCWPm/+877wiHw/wTt2P5NcBcB7YQo/maKLv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAApqwLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAYG0o9AAAAALwf7b8AAAAARU8OPQAAAAAewvM/AAAAAON8rT0AAAAAMRzaPwAAAACbIfs9AAAAAI1i3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABe8wm1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQEr6PQAAAABE4ti/AAAAALJb7DsAAAAAflT2PwAAAABZ39g8AAAAAFca+j8AAAAAiZx/vQAAAADDCty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApo6OtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCq0MjwAAAAAjJIAwAAAAAAWxx69AAAAAF4e5D8AAAAA4Ke2vAAAAABfwN8/AAAAACQS3T0AAAAAuPrjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH7ywDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDKVA6+AAAAAE4I/78AAAAAl8LcPQAAAADpgfY/AAAAAI0fAT4AAAAAVsfwPwAAAACcWwE+AAAAACfz9r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJj1YMb3oLaMAWyUTegDjAF0lEdAqtnEdNnGsHV9lChoBkdAnkVZn6Eal2gHTegDaAhHQKrhF6JIlMR1fZQoaAZHQJ1Ok9cKPXFoB03oA2gIR0Cq4YmxD9fkdX2UKGgGR0CeYYvIwM6SaAdN6ANoCEdAquMB08vEj3V9lChoBkdAnau9Frl/6WgHTegDaAhHQKrn+vaDf3x1fZQoaAZHQJ23d5xBE8doB03oA2gIR0Cq72J9RaX8dX2UKGgGR0CdR/09hZyNaAdN6ANoCEdAqu/Y8B+4LHV9lChoBkdAmig8Aiml7GgHTegDaAhHQKrxVjSXt0F1fZQoaAZHQJx9deD3/PxoB03oA2gIR0Cq9lmeMAFQdX2UKGgGR0Cfq3L26ClKaAdN6ANoCEdAqv3HN7jT8nV9lChoBkdAnww8y31BdGgHTegDaAhHQKr+O56t1ZF1fZQoaAZHQJj5xt3wCr9oB03oA2gIR0Cq/69pZfUndX2UKGgGR0CbytZzPrv9aAdN6ANoCEdAqwSdoexOcnV9lChoBkdAnDmOMERramgHTegDaAhHQKsL94rSVnp1fZQoaAZHQJ9EA7o0Q9RoB03oA2gIR0CrDGdbPhQ4dX2UKGgGR0CfPbahHskZaAdN6ANoCEdAqw3dDBuXNXV9lChoBkdAmhxeJHiFTWgHTegDaAhHQKsSzUpd8iR1fZQoaAZHQJ32Ph73PAxoB03oA2gIR0CrGgvc8DB/dX2UKGgGR0CfsgGT9sJqaAdN6ANoCEdAqxp8DQqqfnV9lChoBkdAnzXm38XN1WgHTegDaAhHQKsb6uM+/xl1fZQoaAZHQJyScq7ROUNoB03oA2gIR0CrIMyHuZ1FdX2UKGgGR0CgBj6rFOwgaAdN6ANoCEdAqyf7Yf4h2XV9lChoBkdAoAZ+r2g3+GgHTegDaAhHQKsoa13t8eF1fZQoaAZHQJ3l2E/SpitoB03oA2gIR0CrKeKw6hg3dX2UKGgGR0Ce1VXLvCuVaAdN6ANoCEdAqy7I6hg3LnV9lChoBkdAoBgqcd5prWgHTegDaAhHQKs2CNgjQiR1fZQoaAZHQKBD3JLdvbZoB03oA2gIR0CrNnrK/20zdX2UKGgGR0CguuVrylN2aAdN6ANoCEdAqzfxbwBo3HV9lChoBkdAlmieh9LHuWgHTegDaAhHQKs87+Idlup1fZQoaAZHQJ3bDxoZhrpoB03oA2gIR0CrRGLrgOz6dX2UKGgGR0Cbf1yM1jy4aAdN6ANoCEdAq0TYCfYjB3V9lChoBkdAnix+gctGu2gHTegDaAhHQKtGUvvBrN51fZQoaAZHQJ28f+bVjI9oB03oA2gIR0CrS07lq8DkdX2UKGgGR0CcYX3++/QCaAdN6ANoCEdAq1J0nLJSznV9lChoBkdAnYrww0wai2gHTegDaAhHQKtS7qj8DSx1fZQoaAZHQJo8wKArhBJoB03oA2gIR0CrVFpBPbfxdX2UKGgGR0Ccq9h4dIXkaAdN6ANoCEdAq1lKlxffGnV9lChoBkdAneYJh4MWoGgHTegDaAhHQKtgceOGTLZ1fZQoaAZHQJuMnRIBikRoB03oA2gIR0CrYOlUyYXwdX2UKGgGR0CZ491EE1VHaAdN6ANoCEdAq2JbyWiUPnV9lChoBkdAnagb4nF5wGgHTegDaAhHQKtnThqCYkV1fZQoaAZHQJ9Xaff4yoJoB03oA2gIR0CrbwIJiRW+dX2UKGgGR0CeO0/cFhXsaAdN6ANoCEdAq2+0GC7K73V9lChoBkdAmYAo4Qz1smgHTegDaAhHQKtx0xoIv8J1fZQoaAZHQJ5esRPGhmJoB03oA2gIR0Crd9iKziS8dX2UKGgGR0CVeMf029+PaAdN6ANoCEdAq38ZCngpB3V9lChoBkdAmKC86FM7EGgHTegDaAhHQKt/iSK3uu11fZQoaAZHQJldt38n/kxoB03oA2gIR0CrgPd0A93bdX2UKGgGR0Cb0lRU3n6maAdN6ANoCEdAq4XrX4CZGHV9lChoBkdAnKplb/wRXmgHTegDaAhHQKuNGFRHf/F1fZQoaAZHQJ9nwgow22poB03oA2gIR0CrjYuEug6EdX2UKGgGR0CWJejJuEVWaAdN6ANoCEdAq48Fa8pTdnV9lChoBkdAnm2jGT9sJ2gHTegDaAhHQKuT6qwQlKN1fZQoaAZHQJ7oHlQuVX5oB03oA2gIR0CrmxfnwG4adX2UKGgGR0CQNdvc8DB/aAdN6ANoCEdAq5uLFhoduHV9lChoBkdAn1YSTt9hJGgHTegDaAhHQKuc/a7EpAl1fZQoaAZHQJ8eUr/bTMJoB03oA2gIR0CrocxxtHhCdX2UKGgGR0CcJ0+GXXyzaAdN6ANoCEdAq6kKhHskZHV9lChoBkdAnuT7LU1AJWgHTegDaAhHQKupfUDuBtl1fZQoaAZHQJQLGhwl0HRoB03oA2gIR0CrqvYjB2wFdX2UKGgGR0CaxEnlGPPtaAdN6ANoCEdAq6/b8Nx2jnV9lChoBkdAam8tfXwsoWgHTegDaAhHQKu3PFtKqXF1fZQoaAZHQJ0aPrhR64VoB03oA2gIR0Crt646GQCCdX2UKGgGR0CdEyaQ3gk1aAdN6ANoCEdAq7kkTDfm93V9lChoBkdAnNgQ80UGmmgHTegDaAhHQKu+Cw22oeh1fZQoaAZHQJk/mYSg5BFoB03oA2gIR0CrxVLWqcVhdX2UKGgGR0CZSbghr30xaAdN6ANoCEdAq8XJDeCTU3V9lChoBkdAluZe9OARTWgHTegDaAhHQKvHNbLU1AJ1fZQoaAZHQI3ttnK4hEBoB03oA2gIR0CrzCeGoJiRdX2UKGgGR0Caa3mqHXVcaAdN6ANoCEdAq9NV0Lc9GXV9lChoBkdAnobMvVVghWgHTegDaAhHQKvTzIFvAGl1fZQoaAZHQJsuF+1Bt1poB03oA2gIR0Cr1T3DFZPmdX2UKGgGR0CVYSa37UG3aAdN6ANoCEdAq9oxqIrOJXV9lChoBkdAniDQ8wHqvGgHTegDaAhHQKvhkWWyC4B1fZQoaAZHQJD83hm5DqpoB03oA2gIR0Cr4ggP/aQFdX2UKGgGR0CbyIpFkQPJaAdN6ANoCEdAq+NyjcmBv3V9lChoBkdAnPX4LsrupmgHTegDaAhHQKvoYpKBd2R1fZQoaAZHQJYEUrGza9NoB03oA2gIR0Cr78IjGDL9dX2UKGgGR0CZNkDb8FY/aAdN6ANoCEdAq/A13jdYXHV9lChoBkdAnlkHY+Sr52gHTegDaAhHQKvxqJ7b+Lp1fZQoaAZHQJxjxA7gbZRoB03oA2gIR0Cr9qdQO4G2dX2UKGgGR0CZIikIHC40aAdN6ANoCEdAq/3UTg2qDXV9lChoBkdAmrWrX+VC5WgHTegDaAhHQKv+RVCojwB1fZQoaAZHQJxPGfdyksVoB03oA2gIR0Cr/7HF5v9+dX2UKGgGR0CZ1CLfk3juaAdN6ANoCEdArASEhgVoH3V9lChoBkdAnx1LADaGpWgHTegDaAhHQKwLwjKPn0V1fZQoaAZHQJoyDP/rB0poB03oA2gIR0CsDDXtrsSkdX2UKGgGR0CaoWxS5y2haAdN6ANoCEdArA2spmVZ93V9lChoBkdAluhA3gk1M2gHTegDaAhHQKwSfsLv1Dl1fZQoaAZHQJgm7dFfAsVoB03oA2gIR0CsGb22PT5PdX2UKGgGR0CZ86BacI7eaAdN6ANoCEdArBounfl6q3V9lChoBkdAm9XQBgeA/mgHTegDaAhHQKwbnhky1u11fZQoaAZHQJsMry/bj95oB03oA2gIR0CsIHGDcuandX2UKGgGR0CXnKGSIP9UaAdN6ANoCEdArCfE/0NBnnV9lChoBkdAmUgf+4smOWgHTegDaAhHQKwoOUpNKyx1fZQoaAZHQJrrN50KZ2JoB03oA2gIR0CsKbMURFqjdX2UKGgGR0Ccbz9x6v7naAdN6ANoCEdArC6iHdoFmnV9lChoBkdAnjUIht+CsmgHTegDaAhHQKw185jH4oJ1fZQoaAZHQIsWqnUDuBtoB03oA2gIR0CsNmObqhUSdX2UKGgGR0Cc/5tOEdvLaAdN6ANoCEdArDfUfigkC3VlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74bdc7f3981eca8da82df36032846d69d7b874747627a859718c768d4fcbfb25
|
3 |
+
size 55998
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b7d3633cbedf09fee1c8bd135c5647444d7f8ea9e81279b810a12b234f5f137
|
3 |
+
size 56638
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45d92a8b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45d92a8b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45d92a8c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45d92a8cb0>", "_build": "<function ActorCriticPolicy._build at 0x7f45d92a8d40>", "forward": "<function ActorCriticPolicy.forward at 0x7f45d92a8dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45d92a8e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45d92a8ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45d92a8f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45d92af050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45d92af0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45d927a660>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665456396450604829, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAHU03PhYKnT7MUQ0/9FqVP64YUL++rZ+/eoAJvj+Cir6Bzxg/i0w9vUefD7/RBjXAQ6fIvitJkT9WMHE9WulbP3cesb5K8ao/X+xvPe6JrL9qrfk+jLmHP399BT8E8CRAtROFvze19T57YQo/maKLv3eUPz7++d09/+gRPzmehz+/05e/HPRuvpXHeD++8Ii9/2obP8Q8Ar4o0X0/EjSiv1Q9oL/Kt4A/h29ivytGvb/wsIq/L60TP1imDT8H+bC/AwF6vUTu+T8KZyC/giCdP8E7dj+TXAXAe2EKP5mii78QdPe+RYzAPsHGCT+YiYM/BpUFwBn6yr8b++Q+HQCRPhJSKj82rBe/bZVEPVsy1b/iyYS/vZMTP19fnL6FAfY+ue+mv8W6PT4S8Mw+DZHjvx1QwjxOzPU+OVjsvirowj/BO3Y/N7X1PnthCj+Zoou/kNeCvsVBJL5jHAs/+rudPzyP1r7ITG6+HRNUP0N0nj49GhY/9Y0TvsZ71z6/Sti/hnOHv1qPiT8Mdkc+0Y1Gv4Trdr+ezmc/ws/iPqjBs7/TNhO+djCWPm/+877wiHw/wTt2P5NcBcB7YQo/maKLv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAApqwLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAYG0o9AAAAALwf7b8AAAAARU8OPQAAAAAewvM/AAAAAON8rT0AAAAAMRzaPwAAAACbIfs9AAAAAI1i3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABe8wm1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQEr6PQAAAABE4ti/AAAAALJb7DsAAAAAflT2PwAAAABZ39g8AAAAAFca+j8AAAAAiZx/vQAAAADDCty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApo6OtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCq0MjwAAAAAjJIAwAAAAAAWxx69AAAAAF4e5D8AAAAA4Ke2vAAAAABfwN8/AAAAACQS3T0AAAAAuPrjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH7ywDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDKVA6+AAAAAE4I/78AAAAAl8LcPQAAAADpgfY/AAAAAI0fAT4AAAAAVsfwPwAAAACcWwE+AAAAACfz9r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJj1YMb3oLaMAWyUTegDjAF0lEdAqtnEdNnGsHV9lChoBkdAnkVZn6Eal2gHTegDaAhHQKrhF6JIlMR1fZQoaAZHQJ1Ok9cKPXFoB03oA2gIR0Cq4YmxD9fkdX2UKGgGR0CeYYvIwM6SaAdN6ANoCEdAquMB08vEj3V9lChoBkdAnau9Frl/6WgHTegDaAhHQKrn+vaDf3x1fZQoaAZHQJ23d5xBE8doB03oA2gIR0Cq72J9RaX8dX2UKGgGR0CdR/09hZyNaAdN6ANoCEdAqu/Y8B+4LHV9lChoBkdAmig8Aiml7GgHTegDaAhHQKrxVjSXt0F1fZQoaAZHQJx9deD3/PxoB03oA2gIR0Cq9lmeMAFQdX2UKGgGR0Cfq3L26ClKaAdN6ANoCEdAqv3HN7jT8nV9lChoBkdAnww8y31BdGgHTegDaAhHQKr+O56t1ZF1fZQoaAZHQJj5xt3wCr9oB03oA2gIR0Cq/69pZfUndX2UKGgGR0CbytZzPrv9aAdN6ANoCEdAqwSdoexOcnV9lChoBkdAnDmOMERramgHTegDaAhHQKsL94rSVnp1fZQoaAZHQJ9EA7o0Q9RoB03oA2gIR0CrDGdbPhQ4dX2UKGgGR0CfPbahHskZaAdN6ANoCEdAqw3dDBuXNXV9lChoBkdAmhxeJHiFTWgHTegDaAhHQKsSzUpd8iR1fZQoaAZHQJ32Ph73PAxoB03oA2gIR0CrGgvc8DB/dX2UKGgGR0CfsgGT9sJqaAdN6ANoCEdAqxp8DQqqfnV9lChoBkdAnzXm38XN1WgHTegDaAhHQKsb6uM+/xl1fZQoaAZHQJyScq7ROUNoB03oA2gIR0CrIMyHuZ1FdX2UKGgGR0CgBj6rFOwgaAdN6ANoCEdAqyf7Yf4h2XV9lChoBkdAoAZ+r2g3+GgHTegDaAhHQKsoa13t8eF1fZQoaAZHQJ3l2E/SpitoB03oA2gIR0CrKeKw6hg3dX2UKGgGR0Ce1VXLvCuVaAdN6ANoCEdAqy7I6hg3LnV9lChoBkdAoBgqcd5prWgHTegDaAhHQKs2CNgjQiR1fZQoaAZHQKBD3JLdvbZoB03oA2gIR0CrNnrK/20zdX2UKGgGR0CguuVrylN2aAdN6ANoCEdAqzfxbwBo3HV9lChoBkdAlmieh9LHuWgHTegDaAhHQKs87+Idlup1fZQoaAZHQJ3bDxoZhrpoB03oA2gIR0CrRGLrgOz6dX2UKGgGR0Cbf1yM1jy4aAdN6ANoCEdAq0TYCfYjB3V9lChoBkdAnix+gctGu2gHTegDaAhHQKtGUvvBrN51fZQoaAZHQJ28f+bVjI9oB03oA2gIR0CrS07lq8DkdX2UKGgGR0CcYX3++/QCaAdN6ANoCEdAq1J0nLJSznV9lChoBkdAnYrww0wai2gHTegDaAhHQKtS7qj8DSx1fZQoaAZHQJo8wKArhBJoB03oA2gIR0CrVFpBPbfxdX2UKGgGR0Ccq9h4dIXkaAdN6ANoCEdAq1lKlxffGnV9lChoBkdAneYJh4MWoGgHTegDaAhHQKtgceOGTLZ1fZQoaAZHQJuMnRIBikRoB03oA2gIR0CrYOlUyYXwdX2UKGgGR0CZ491EE1VHaAdN6ANoCEdAq2JbyWiUPnV9lChoBkdAnagb4nF5wGgHTegDaAhHQKtnThqCYkV1fZQoaAZHQJ9Xaff4yoJoB03oA2gIR0CrbwIJiRW+dX2UKGgGR0CeO0/cFhXsaAdN6ANoCEdAq2+0GC7K73V9lChoBkdAmYAo4Qz1smgHTegDaAhHQKtx0xoIv8J1fZQoaAZHQJ5esRPGhmJoB03oA2gIR0Crd9iKziS8dX2UKGgGR0CVeMf029+PaAdN6ANoCEdAq38ZCngpB3V9lChoBkdAmKC86FM7EGgHTegDaAhHQKt/iSK3uu11fZQoaAZHQJldt38n/kxoB03oA2gIR0CrgPd0A93bdX2UKGgGR0Cb0lRU3n6maAdN6ANoCEdAq4XrX4CZGHV9lChoBkdAnKplb/wRXmgHTegDaAhHQKuNGFRHf/F1fZQoaAZHQJ9nwgow22poB03oA2gIR0CrjYuEug6EdX2UKGgGR0CWJejJuEVWaAdN6ANoCEdAq48Fa8pTdnV9lChoBkdAnm2jGT9sJ2gHTegDaAhHQKuT6qwQlKN1fZQoaAZHQJ7oHlQuVX5oB03oA2gIR0CrmxfnwG4adX2UKGgGR0CQNdvc8DB/aAdN6ANoCEdAq5uLFhoduHV9lChoBkdAn1YSTt9hJGgHTegDaAhHQKuc/a7EpAl1fZQoaAZHQJ8eUr/bTMJoB03oA2gIR0CrocxxtHhCdX2UKGgGR0CcJ0+GXXyzaAdN6ANoCEdAq6kKhHskZHV9lChoBkdAnuT7LU1AJWgHTegDaAhHQKupfUDuBtl1fZQoaAZHQJQLGhwl0HRoB03oA2gIR0CrqvYjB2wFdX2UKGgGR0CaxEnlGPPtaAdN6ANoCEdAq6/b8Nx2jnV9lChoBkdAam8tfXwsoWgHTegDaAhHQKu3PFtKqXF1fZQoaAZHQJ0aPrhR64VoB03oA2gIR0Crt646GQCCdX2UKGgGR0CdEyaQ3gk1aAdN6ANoCEdAq7kkTDfm93V9lChoBkdAnNgQ80UGmmgHTegDaAhHQKu+Cw22oeh1fZQoaAZHQJk/mYSg5BFoB03oA2gIR0CrxVLWqcVhdX2UKGgGR0CZSbghr30xaAdN6ANoCEdAq8XJDeCTU3V9lChoBkdAluZe9OARTWgHTegDaAhHQKvHNbLU1AJ1fZQoaAZHQI3ttnK4hEBoB03oA2gIR0CrzCeGoJiRdX2UKGgGR0Caa3mqHXVcaAdN6ANoCEdAq9NV0Lc9GXV9lChoBkdAnobMvVVghWgHTegDaAhHQKvTzIFvAGl1fZQoaAZHQJsuF+1Bt1poB03oA2gIR0Cr1T3DFZPmdX2UKGgGR0CVYSa37UG3aAdN6ANoCEdAq9oxqIrOJXV9lChoBkdAniDQ8wHqvGgHTegDaAhHQKvhkWWyC4B1fZQoaAZHQJD83hm5DqpoB03oA2gIR0Cr4ggP/aQFdX2UKGgGR0CbyIpFkQPJaAdN6ANoCEdAq+NyjcmBv3V9lChoBkdAnPX4LsrupmgHTegDaAhHQKvoYpKBd2R1fZQoaAZHQJYEUrGza9NoB03oA2gIR0Cr78IjGDL9dX2UKGgGR0CZNkDb8FY/aAdN6ANoCEdAq/A13jdYXHV9lChoBkdAnlkHY+Sr52gHTegDaAhHQKvxqJ7b+Lp1fZQoaAZHQJxjxA7gbZRoB03oA2gIR0Cr9qdQO4G2dX2UKGgGR0CZIikIHC40aAdN6ANoCEdAq/3UTg2qDXV9lChoBkdAmrWrX+VC5WgHTegDaAhHQKv+RVCojwB1fZQoaAZHQJxPGfdyksVoB03oA2gIR0Cr/7HF5v9+dX2UKGgGR0CZ1CLfk3juaAdN6ANoCEdArASEhgVoH3V9lChoBkdAnx1LADaGpWgHTegDaAhHQKwLwjKPn0V1fZQoaAZHQJoyDP/rB0poB03oA2gIR0CsDDXtrsSkdX2UKGgGR0CaoWxS5y2haAdN6ANoCEdArA2spmVZ93V9lChoBkdAluhA3gk1M2gHTegDaAhHQKwSfsLv1Dl1fZQoaAZHQJgm7dFfAsVoB03oA2gIR0CsGb22PT5PdX2UKGgGR0CZ86BacI7eaAdN6ANoCEdArBounfl6q3V9lChoBkdAm9XQBgeA/mgHTegDaAhHQKwbnhky1u11fZQoaAZHQJsMry/bj95oB03oA2gIR0CsIHGDcuandX2UKGgGR0CXnKGSIP9UaAdN6ANoCEdArCfE/0NBnnV9lChoBkdAmUgf+4smOWgHTegDaAhHQKwoOUpNKyx1fZQoaAZHQJrrN50KZ2JoB03oA2gIR0CsKbMURFqjdX2UKGgGR0Ccbz9x6v7naAdN6ANoCEdArC6iHdoFmnV9lChoBkdAnjUIht+CsmgHTegDaAhHQKw185jH4oJ1fZQoaAZHQIsWqnUDuBtoB03oA2gIR0CsNmObqhUSdX2UKGgGR0Cc/5tOEdvLaAdN6ANoCEdArDfUfigkC3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6cf10c7a8df006eb9012c70df47c54617fccaf323f673d8d348e37bda59c67d
|
3 |
+
size 1096487
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1859.9806156665086, "std_reward": 54.4463408871452, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-11T04:02:42.498150"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a901a5af3130d94b8ff017f8a19755e46c9af045eb56bd8b07d0d54c096c5a5f
|
3 |
+
size 2763
|