Amankankriya
commited on
Commit
•
1c00157
1
Parent(s):
fe44d40
trained model for HalfCheetah-v4 using DDPG
Browse files- .gitattributes +1 -0
- DDPG-HalfCheetah-v4.zip +3 -0
- DDPG-HalfCheetah-v4/_stable_baselines3_version +1 -0
- DDPG-HalfCheetah-v4/actor.optimizer.pth +3 -0
- DDPG-HalfCheetah-v4/critic.optimizer.pth +3 -0
- DDPG-HalfCheetah-v4/data +139 -0
- DDPG-HalfCheetah-v4/policy.pth +3 -0
- DDPG-HalfCheetah-v4/pytorch_variables.pth +3 -0
- DDPG-HalfCheetah-v4/system_info.txt +8 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
DDPG-HalfCheetah-v4.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f39c48699fca92312a2d88cf9e8ee38dcbf4e2eddef794eb2a3e6911ff11a532
|
3 |
+
size 665707
|
DDPG-HalfCheetah-v4/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.3.2
|
DDPG-HalfCheetah-v4/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2fb48218087cf9dfc1dc1384906aaf6d4c8685cd9ea537945eff479e343f393
|
3 |
+
size 161952
|
DDPG-HalfCheetah-v4/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db5993dd9baa61a22f4aee1aa1f6903f7fead1df2987aa799f52fe4fbe17483b
|
3 |
+
size 162976
|
DDPG-HalfCheetah-v4/data
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__annotations__": "{'actor': <class 'stable_baselines3.td3.policies.Actor'>, 'actor_target': <class 'stable_baselines3.td3.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function TD3Policy.__init__ at 0x3181c6f70>",
|
9 |
+
"_build": "<function TD3Policy._build at 0x3181d2040>",
|
10 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x3181d20d0>",
|
11 |
+
"make_actor": "<function TD3Policy.make_actor at 0x3181d2160>",
|
12 |
+
"make_critic": "<function TD3Policy.make_critic at 0x3181d21f0>",
|
13 |
+
"forward": "<function TD3Policy.forward at 0x3181d2280>",
|
14 |
+
"_predict": "<function TD3Policy._predict at 0x3181d2310>",
|
15 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x3181d23a0>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc._abc_data object at 0x3181ceb00>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
":type:": "<class 'dict'>",
|
22 |
+
":serialized:": "gAWVcwAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEuAS4BljAJxZpRdlChLgEuAZXWMCW5fY3JpdGljc5RLAXUu",
|
23 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
24 |
+
"net_arch": {
|
25 |
+
"pi": [
|
26 |
+
128,
|
27 |
+
128
|
28 |
+
],
|
29 |
+
"qf": [
|
30 |
+
128,
|
31 |
+
128
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"n_critics": 1
|
35 |
+
},
|
36 |
+
"num_timesteps": 2395407,
|
37 |
+
"_total_timesteps": 5000000,
|
38 |
+
"_num_timesteps_at_start": 0,
|
39 |
+
"seed": null,
|
40 |
+
"action_noise": null,
|
41 |
+
"start_time": 1718010746217830000,
|
42 |
+
"learning_rate": 0.00032,
|
43 |
+
"tensorboard_log": null,
|
44 |
+
"_last_obs": {
|
45 |
+
":type:": "<class 'numpy.ndarray'>",
|
46 |
+
":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAHih2mYmqrS/86IAZbZ7xz+dM073Ki26PxTyLbGc5OG/m3QE+K/31L80vwbXTajKPyMfRx2sWeU/t75ru+oU4j+K3q8Wy6giQGj/J3leDfI/b1w8ZikU4T/n6zwoEpczwK20YHYP+QPAMx4myfBLH8CJ9O0Z2+ogwOjsRcYcBjhA0FkoVgRZ/L+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"
|
47 |
+
},
|
48 |
+
"_last_episode_starts": {
|
49 |
+
":type:": "<class 'numpy.ndarray'>",
|
50 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
51 |
+
},
|
52 |
+
"_last_original_obs": {
|
53 |
+
":type:": "<class 'numpy.ndarray'>",
|
54 |
+
":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAP9Crtkevr6/ETnZnk4duD+8FddlnvLpP1fZ6tONh9C/rqE/FApcvT+/oQxzgODkP/NM1Ow68+G/HMMxEjbKwD+AbhcxXisoQGWJywbcTuu/36X1Xv1p/j+HriW9D47/P6toFUmuES/A6sTxFD0HGsATx4iH4AHfv6xepTclCTNAE3KaC56UJkCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"
|
55 |
+
},
|
56 |
+
"_episode_num": 2395,
|
57 |
+
"use_sde": false,
|
58 |
+
"sde_sample_freq": -1,
|
59 |
+
"_current_progress_remaining": 0.5209186,
|
60 |
+
"_stats_window_size": 100,
|
61 |
+
"ep_info_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQMGh3nw5NoKMAWyUTegDjAF0lEdAt5aum78Nx3V9lChoBkdAlNeN7fHgg2gHTegDaAhHQLeZBP9kz411fZQoaAZHQMIk7VdonKJoB03oA2gIR0C3m1NeQdS3dX2UKGgGR0DBykkiwB5paAdN6ANoCEdAt52q0MPSUnV9lChoBkdAwZ2gW6bvw2gHTegDaAhHQLegCMAFPi11fZQoaAZHQMGr8WUbDMxoB03oA2gIR0C3olotUXHjdX2UKGgGR0DCEWn/o7muaAdN6ANoCEdAt6SoRDkU9XV9lChoBkdAwrc0WmgrY2gHTegDaAhHQLem+vM8ox51fZQoaAZHQMLGm5Etuk1oB03oA2gIR0C3qUxWgezVdX2UKGgGR0DChyBSLqD9aAdN6ANoCEdAt6udMlC1JHV9lChoBkdAwYihMdLg42gHTegDaAhHQLet6ltCRfZ1fZQoaAZHQMMOP/W1+iJoB03oA2gIR0C3sDdfgJkYdX2UKGgGR0DCviTZOBUaaAdN6ANoCEdAt7KMovzvqnV9lChoBkdAwtKqnhsImmgHTegDaAhHQLe04ef7Jnx1fZQoaAZHQMJ4CV2JSBNoB03oA2gIR0C3tzFpXZGsdX2UKGgGR0DCPj5/EwWWaAdN6ANoCEdAt7mF45cTrXV9lChoBkdAwn+qYXO4X2gHTegDaAhHQLe72MY/FBJ1fZQoaAZHQMD5BS9VWCFoB03oA2gIR0C3vinmzSkTdX2UKGgGR0DCR3/UONHZaAdN6ANoCEdAt8CBHxz7uXV9lChoBkdAwoofE+gUUWgHTegDaAhHQLfC1pWV/tp1fZQoaAZHQMK/Vc4o7V9oB03oA2gIR0C3xSdjwx33dX2UKGgGR0DCCCTWK/EgaAdN6ANoCEdAt8eDq4YrKHV9lChoBkdAwkeXUFSsKmgHTegDaAhHQLfJ1+Idlup1fZQoaAZHQMJ9tYQSSNhoB03oA2gIR0C3zCz7uUlidX2UKGgGR0DCeZKSgXdkaAdN6ANoCEdAt85/tBv733V9lChoBkdAwn9EFHrhSGgHTegDaAhHQLfQ1edkJ8h1fZQoaAZHQMJpSsySFGpoB03oA2gIR0C30yqioKlYdX2UKGgGR0DCV6e87IT5aAdN6ANoCEdAt9V/IhhYvHV9lChoBkdAwkGBogV45mgHTegDaAhHQLfXz/d69kB1fZQoaAZHQMKH5ZGjKxNoB03oA2gIR0C32iAqiGnGdX2UKGgGR0DCG7xiXpnpaAdN6ANoCEdAt9xw+iaiK3V9lChoBkdAwrotOWSlnGgHTegDaAhHQLfewANXo1V1fZQoaAZHQMJh4aFM7EJoB03oA2gIR0C34RBASnLrdX2UKGgGR0DBokiZYxL1aAdN6ANoCEdAt+NgsiB5HHV9lChoBkdAwjGFohY/3WgHTegDaAhHQLflq4D9wWF1fZQoaAZHQMF1kvkili1oB03oA2gIR0C35/WCZnctdX2UKGgGR0DCHzrMA3kxaAdN6ANoCEdAt+pAymALA3V9lChoBkdAwjW/8JD3NGgHTegDaAhHQLfslufVZs91fZQoaAZHQMHtvDhcZ+BoB03oA2gIR0C37uO9rXUZdX2UKGgGR0DCZY8pobn6aAdN6ANoCEdAt/E8qqfe13V9lChoBkdAwhsSgq3EymgHTegDaAhHQLfzl9NN8E51fZQoaAZHQMIcOCQLeANoB03oA2gIR0C39e3pB5X2dX2UKGgGR0DCaK8nZ00WaAdN6ANoCEdAt/hAxfv4NHV9lChoBkdAwf57ERaouWgHTegDaAhHQLf6lH6uW8h1fZQoaAZHQMKHBVbzK9xoB03oA2gIR0C3/OuUyHmBdX2UKGgGR0DDHXC7kGRnaAdN6ANoCEdAt/8/gKnei3V9lChoBkdAwivX4YaYNWgHTegDaAhHQLgBkyJbdJt1fZQoaAZHQMH45Bw++uhoB03oA2gIR0C4A+fT5O8DdX2UKGgGR0DBdN7UExIraAdN6ANoCEdAuAZBHUc4pHV9lChoBkdAwkc9c1wYL2gHTegDaAhHQLgInjjJdSl1fZQoaAZHQMF7DQE6kqNoB03oA2gIR0C4CvL8ejmCdX2UKGgGR0DCAMp6Uqx1aAdN6ANoCEdAuA1I8p1A7nV9lChoBkdAwdNwUahpQGgHTegDaAhHQLgPnqDsdDJ1fZQoaAZHQMH3ntEw35xoB03oA2gIR0C4Efd+5OJtdX2UKGgGR0DCGu0xj8UFaAdN6ANoCEdAuBRN2t+1B3V9lChoBkdAwcGnC/GlymgHTegDaAhHQLgWputwJgN1fZQoaAZHQMHJELjxTbZoB03oA2gIR0C4GQBdpqREdX2UKGgGR0DCUBJ8neBQaAdN6ANoCEdAuBtZUZNwi3V9lChoBkdAwjvDEKE39GgHTegDaAhHQLgdsDuSfUZ1fZQoaAZHQMFRjanBLwpoB03oA2gIR0C4IAY6wMYudX2UKGgGR0DCxi5f2K2saAdN6ANoCEdAuCJaQYDT0HV9lChoBkdAwntz/zasZGgHTegDaAhHQLgks9zwMH91fZQoaAZHQMJbtotL+P1oB03oA2gIR0C4JwaIWP92dX2UKGgGR0DCOwfvSc9XaAdN6ANoCEdAuCldGpda+3V9lChoBkdAwtARa1TisGgHTegDaAhHQLgrtPBSDRN1fZQoaAZHQMHQtv0Zm7JoB03oA2gIR0C4LgpzHS4OdX2UKGgGR0DCjrsaKk2xaAdN6ANoCEdAuDBfSQYDT3V9lChoBkdAwqB4xyGSIWgHTegDaAhHQLgys1DjR2N1fZQoaAZHQMGwsoLG7z1oB03oA2gIR0C4NREdRzikdX2UKGgGR0Cm0eWTgVGkaAdN6ANoCEdAuDdrXtjTa3V9lChoBkdAwpwvTDwYtWgHTegDaAhHQLg5vwA2hqV1fZQoaAZHQMLKDpnHvMNoB03oA2gIR0C4PBWw7kn1dX2UKGgGR0DB84yt/4IsaAdN6ANoCEdAuD5qp4rz5HV9lChoBkdAwnrj9qDbrWgHTegDaAhHQLhAyapgkTp1fZQoaAZHQMIuXSn+AEtoB03oA2gIR0C4QyF2icoZdX2UKGgGR0DCxFugctGvaAdN6ANoCEdAuEV6fWcz7HV9lChoBkdAwgQj0L+glGgHTegDaAhHQLhH08W9DhN1fZQoaAZHQMMpWhCD28JoB03oA2gIR0C4Si5XuE26dX2UKGgGR0DC9R3bXYlIaAdN6ANoCEdAuEyETviLl3V9lChoBkdAwtEbukUKzGgHTegDaAhHQLhO3OZ9d/t1fZQoaAZHQMLCMKYiPhhoB03oA2gIR0C4UTIChew+dX2UKGgGR0DCC1XYL9deaAdN6ANoCEdAuFOLLr5ZbXV9lChoBkdAwUGDst03fmgHTegDaAhHQLhV4Z8KG+N1fZQoaAZHQMIIVbAckt5oB03oA2gIR0C4WDnEyckMdX2UKGgGR0DCdBZnrY5DaAdN6ANoCEdAuFqPWy1NQHV9lChoBkdAwvbrQcghbGgHTegDaAhHQLhc+nHNorZ1fZQoaAZHQMIUALkS26VoB03oA2gIR0C4X1JmEoOQdX2UKGgGR0DCXO3vhIe6aAdN6ANoCEdAuGGqYQarFXV9lChoBkdAwkWfdPci4mgHTegDaAhHQLhkAlqJuVJ1fZQoaAZHQMF9Bt6PbPBoB03oA2gIR0C4ZmBib2DhdX2UKGgGR0DCrAj8ejmCaAdN6ANoCEdAuGi6zqrzXnV9lChoBkdAws3Ag4ffXWgHTegDaAhHQLhrF9JBgNR1fZQoaAZHQMHeJbyhBZ9oB03oA2gIR0C4bXVXq7iAdX2UKGgGR0DCPS9VcUudaAdN6ANoCEdAuG/VddE9dXV9lChoBkdAwhceS/0ulGgHTegDaAhHQLhyMruYx+N1fZQoaAZHQMIRdWrOqvNoB03oA2gIR0C4dKukHlfadX2UKGgGR0Ci6WiZF5OaaAdN6ANoCEdAuHcFJNCZ4XV9lChoBkdAwlZuAmzBymgHTegDaAhHQLh5YsMRYih1fZQoaAZHQMFd6xBu4w1oB03oA2gIR0C4h4BODaoNdX2UKGgGR0DCm83TEzfraAdN6ANoCEdAuInWKNyYHHVlLg=="
|
64 |
+
},
|
65 |
+
"ep_success_buffer": {
|
66 |
+
":type:": "<class 'collections.deque'>",
|
67 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
68 |
+
},
|
69 |
+
"_n_updates": 2395307,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVsQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFUsRhZRoGXSUUpSMBl9zaGFwZZRLEYWUjANsb3eUaBEologAAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoC0sRhZRoGXSUUpSMBGhpZ2iUaBEologAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sRhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
|
73 |
+
"dtype": "float64",
|
74 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
|
75 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
|
76 |
+
"_shape": [
|
77 |
+
17
|
78 |
+
],
|
79 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
|
80 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
81 |
+
"low_repr": "-inf",
|
82 |
+
"high_repr": "inf",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
87 |
+
":serialized:": "gAWVfwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihA6z5GHrnLfBeG/QkZaiCUzjANpbmOUihGlluXzqdyrAUtuDLN5lNnYAHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
88 |
+
"dtype": "float32",
|
89 |
+
"bounded_below": "[ True True True True True True]",
|
90 |
+
"bounded_above": "[ True True True True True True]",
|
91 |
+
"_shape": [
|
92 |
+
6
|
93 |
+
],
|
94 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
95 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
96 |
+
"low_repr": "-1.0",
|
97 |
+
"high_repr": "1.0",
|
98 |
+
"_np_random": "Generator(PCG64)"
|
99 |
+
},
|
100 |
+
"n_envs": 1,
|
101 |
+
"buffer_size": 1000000,
|
102 |
+
"batch_size": 100,
|
103 |
+
"learning_starts": 100,
|
104 |
+
"tau": 0.05,
|
105 |
+
"gamma": 0.99,
|
106 |
+
"gradient_steps": 1,
|
107 |
+
"optimize_memory_usage": false,
|
108 |
+
"replay_buffer_class": {
|
109 |
+
":type:": "<class 'abc.ABCMeta'>",
|
110 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
111 |
+
"__module__": "stable_baselines3.common.buffers",
|
112 |
+
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
113 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
114 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x318100a60>",
|
115 |
+
"add": "<function ReplayBuffer.add at 0x318100af0>",
|
116 |
+
"sample": "<function ReplayBuffer.sample at 0x318100b80>",
|
117 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x318100c10>",
|
118 |
+
"_maybe_cast_dtype": "<staticmethod object at 0x3180f6a90>",
|
119 |
+
"__abstractmethods__": "frozenset()",
|
120 |
+
"_abc_impl": "<_abc._abc_data object at 0x3180fee80>"
|
121 |
+
},
|
122 |
+
"replay_buffer_kwargs": {},
|
123 |
+
"train_freq": {
|
124 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
125 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
126 |
+
},
|
127 |
+
"use_sde_at_warmup": false,
|
128 |
+
"policy_delay": 1,
|
129 |
+
"target_noise_clip": 0.0,
|
130 |
+
"target_policy_noise": 0.1,
|
131 |
+
"lr_schedule": {
|
132 |
+
":type:": "<class 'function'>",
|
133 |
+
":serialized:": "gAWVwwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGovVXNlcnMvYW1hbmthbmtyaXlhL0RvY3VtZW50cy9EZWVwIFJML2RlZXBybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMai9Vc2Vycy9hbWFua2Fua3JpeWEvRG9jdW1lbnRzL0RlZXAgUkwvZGVlcHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz80+LWI42jxhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="
|
134 |
+
},
|
135 |
+
"actor_batch_norm_stats": [],
|
136 |
+
"critic_batch_norm_stats": [],
|
137 |
+
"actor_batch_norm_stats_target": [],
|
138 |
+
"critic_batch_norm_stats_target": []
|
139 |
+
}
|
DDPG-HalfCheetah-v4/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a61bd4a13820479fdae50c8cf49401c7a9f6e529c0994bec62bb3a57c531047
|
3 |
+
size 322638
|
DDPG-HalfCheetah-v4/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebdad4b9cfe9cd22a3abadb5623bf7bb1f6eb2e408740245eb3f2044b0adc018
|
3 |
+
size 864
|
DDPG-HalfCheetah-v4/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-14.5-arm64-arm-64bit Darwin Kernel Version 23.5.0: Wed May 1 20:19:05 PDT 2024; root:xnu-10063.121.3~5/RELEASE_ARM64_T8112
|
2 |
+
- Python: 3.9.6
|
3 |
+
- Stable-Baselines3: 2.3.2
|
4 |
+
- PyTorch: 2.3.0
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.1
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HalfCheetah-v4
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DDPG
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: HalfCheetah-v4
|
16 |
+
type: HalfCheetah-v4
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 9140.96 +/- 218.23
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DDPG** Agent playing **HalfCheetah-v4**
|
25 |
+
This is a trained model of a **DDPG** agent playing **HalfCheetah-v4**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=", "__module__": "stable_baselines3.td3.policies", "__annotations__": "{'actor': <class 'stable_baselines3.td3.policies.Actor'>, 'actor_target': <class 'stable_baselines3.td3.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function TD3Policy.__init__ at 0x3181c6f70>", "_build": "<function TD3Policy._build at 0x3181d2040>", "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x3181d20d0>", "make_actor": "<function TD3Policy.make_actor at 0x3181d2160>", "make_critic": "<function TD3Policy.make_critic at 0x3181d21f0>", "forward": "<function TD3Policy.forward at 0x3181d2280>", "_predict": "<function TD3Policy._predict at 0x3181d2310>", "set_training_mode": "<function TD3Policy.set_training_mode at 0x3181d23a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x3181ceb00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVcwAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEuAS4BljAJxZpRdlChLgEuAZXWMCW5fY3JpdGljc5RLAXUu", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": {"pi": [128, 128], "qf": [128, 128]}, "n_critics": 1}, "num_timesteps": 2395407, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718010746217830000, "learning_rate": 0.00032, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAHih2mYmqrS/86IAZbZ7xz+dM073Ki26PxTyLbGc5OG/m3QE+K/31L80vwbXTajKPyMfRx2sWeU/t75ru+oU4j+K3q8Wy6giQGj/J3leDfI/b1w8ZikU4T/n6zwoEpczwK20YHYP+QPAMx4myfBLH8CJ9O0Z2+ogwOjsRcYcBjhA0FkoVgRZ/L+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAP9Crtkevr6/ETnZnk4duD+8FddlnvLpP1fZ6tONh9C/rqE/FApcvT+/oQxzgODkP/NM1Ow68+G/HMMxEjbKwD+AbhcxXisoQGWJywbcTuu/36X1Xv1p/j+HriW9D47/P6toFUmuES/A6sTxFD0HGsATx4iH4AHfv6xepTclCTNAE3KaC56UJkCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"}, "_episode_num": 2395, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.5209186, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQMGh3nw5NoKMAWyUTegDjAF0lEdAt5aum78Nx3V9lChoBkdAlNeN7fHgg2gHTegDaAhHQLeZBP9kz411fZQoaAZHQMIk7VdonKJoB03oA2gIR0C3m1NeQdS3dX2UKGgGR0DBykkiwB5paAdN6ANoCEdAt52q0MPSUnV9lChoBkdAwZ2gW6bvw2gHTegDaAhHQLegCMAFPi11fZQoaAZHQMGr8WUbDMxoB03oA2gIR0C3olotUXHjdX2UKGgGR0DCEWn/o7muaAdN6ANoCEdAt6SoRDkU9XV9lChoBkdAwrc0WmgrY2gHTegDaAhHQLem+vM8ox51fZQoaAZHQMLGm5Etuk1oB03oA2gIR0C3qUxWgezVdX2UKGgGR0DChyBSLqD9aAdN6ANoCEdAt6udMlC1JHV9lChoBkdAwYihMdLg42gHTegDaAhHQLet6ltCRfZ1fZQoaAZHQMMOP/W1+iJoB03oA2gIR0C3sDdfgJkYdX2UKGgGR0DCviTZOBUaaAdN6ANoCEdAt7KMovzvqnV9lChoBkdAwtKqnhsImmgHTegDaAhHQLe04ef7Jnx1fZQoaAZHQMJ4CV2JSBNoB03oA2gIR0C3tzFpXZGsdX2UKGgGR0DCPj5/EwWWaAdN6ANoCEdAt7mF45cTrXV9lChoBkdAwn+qYXO4X2gHTegDaAhHQLe72MY/FBJ1fZQoaAZHQMD5BS9VWCFoB03oA2gIR0C3vinmzSkTdX2UKGgGR0DCR3/UONHZaAdN6ANoCEdAt8CBHxz7uXV9lChoBkdAwoofE+gUUWgHTegDaAhHQLfC1pWV/tp1fZQoaAZHQMK/Vc4o7V9oB03oA2gIR0C3xSdjwx33dX2UKGgGR0DCCCTWK/EgaAdN6ANoCEdAt8eDq4YrKHV9lChoBkdAwkeXUFSsKmgHTegDaAhHQLfJ1+Idlup1fZQoaAZHQMJ9tYQSSNhoB03oA2gIR0C3zCz7uUlidX2UKGgGR0DCeZKSgXdkaAdN6ANoCEdAt85/tBv733V9lChoBkdAwn9EFHrhSGgHTegDaAhHQLfQ1edkJ8h1fZQoaAZHQMJpSsySFGpoB03oA2gIR0C30yqioKlYdX2UKGgGR0DCV6e87IT5aAdN6ANoCEdAt9V/IhhYvHV9lChoBkdAwkGBogV45mgHTegDaAhHQLfXz/d69kB1fZQoaAZHQMKH5ZGjKxNoB03oA2gIR0C32iAqiGnGdX2UKGgGR0DCG7xiXpnpaAdN6ANoCEdAt9xw+iaiK3V9lChoBkdAwrotOWSlnGgHTegDaAhHQLfewANXo1V1fZQoaAZHQMJh4aFM7EJoB03oA2gIR0C34RBASnLrdX2UKGgGR0DBokiZYxL1aAdN6ANoCEdAt+NgsiB5HHV9lChoBkdAwjGFohY/3WgHTegDaAhHQLflq4D9wWF1fZQoaAZHQMF1kvkili1oB03oA2gIR0C35/WCZnctdX2UKGgGR0DCHzrMA3kxaAdN6ANoCEdAt+pAymALA3V9lChoBkdAwjW/8JD3NGgHTegDaAhHQLfslufVZs91fZQoaAZHQMHtvDhcZ+BoB03oA2gIR0C37uO9rXUZdX2UKGgGR0DCZY8pobn6aAdN6ANoCEdAt/E8qqfe13V9lChoBkdAwhsSgq3EymgHTegDaAhHQLfzl9NN8E51fZQoaAZHQMIcOCQLeANoB03oA2gIR0C39e3pB5X2dX2UKGgGR0DCaK8nZ00WaAdN6ANoCEdAt/hAxfv4NHV9lChoBkdAwf57ERaouWgHTegDaAhHQLf6lH6uW8h1fZQoaAZHQMKHBVbzK9xoB03oA2gIR0C3/OuUyHmBdX2UKGgGR0DDHXC7kGRnaAdN6ANoCEdAt/8/gKnei3V9lChoBkdAwivX4YaYNWgHTegDaAhHQLgBkyJbdJt1fZQoaAZHQMH45Bw++uhoB03oA2gIR0C4A+fT5O8DdX2UKGgGR0DBdN7UExIraAdN6ANoCEdAuAZBHUc4pHV9lChoBkdAwkc9c1wYL2gHTegDaAhHQLgInjjJdSl1fZQoaAZHQMF7DQE6kqNoB03oA2gIR0C4CvL8ejmCdX2UKGgGR0DCAMp6Uqx1aAdN6ANoCEdAuA1I8p1A7nV9lChoBkdAwdNwUahpQGgHTegDaAhHQLgPnqDsdDJ1fZQoaAZHQMH3ntEw35xoB03oA2gIR0C4Efd+5OJtdX2UKGgGR0DCGu0xj8UFaAdN6ANoCEdAuBRN2t+1B3V9lChoBkdAwcGnC/GlymgHTegDaAhHQLgWputwJgN1fZQoaAZHQMHJELjxTbZoB03oA2gIR0C4GQBdpqREdX2UKGgGR0DCUBJ8neBQaAdN6ANoCEdAuBtZUZNwi3V9lChoBkdAwjvDEKE39GgHTegDaAhHQLgdsDuSfUZ1fZQoaAZHQMFRjanBLwpoB03oA2gIR0C4IAY6wMYudX2UKGgGR0DCxi5f2K2saAdN6ANoCEdAuCJaQYDT0HV9lChoBkdAwntz/zasZGgHTegDaAhHQLgks9zwMH91fZQoaAZHQMJbtotL+P1oB03oA2gIR0C4JwaIWP92dX2UKGgGR0DCOwfvSc9XaAdN6ANoCEdAuCldGpda+3V9lChoBkdAwtARa1TisGgHTegDaAhHQLgrtPBSDRN1fZQoaAZHQMHQtv0Zm7JoB03oA2gIR0C4LgpzHS4OdX2UKGgGR0DCjrsaKk2xaAdN6ANoCEdAuDBfSQYDT3V9lChoBkdAwqB4xyGSIWgHTegDaAhHQLgys1DjR2N1fZQoaAZHQMGwsoLG7z1oB03oA2gIR0C4NREdRzikdX2UKGgGR0Cm0eWTgVGkaAdN6ANoCEdAuDdrXtjTa3V9lChoBkdAwpwvTDwYtWgHTegDaAhHQLg5vwA2hqV1fZQoaAZHQMLKDpnHvMNoB03oA2gIR0C4PBWw7kn1dX2UKGgGR0DB84yt/4IsaAdN6ANoCEdAuD5qp4rz5HV9lChoBkdAwnrj9qDbrWgHTegDaAhHQLhAyapgkTp1fZQoaAZHQMIuXSn+AEtoB03oA2gIR0C4QyF2icoZdX2UKGgGR0DCxFugctGvaAdN6ANoCEdAuEV6fWcz7HV9lChoBkdAwgQj0L+glGgHTegDaAhHQLhH08W9DhN1fZQoaAZHQMMpWhCD28JoB03oA2gIR0C4Si5XuE26dX2UKGgGR0DC9R3bXYlIaAdN6ANoCEdAuEyETviLl3V9lChoBkdAwtEbukUKzGgHTegDaAhHQLhO3OZ9d/t1fZQoaAZHQMLCMKYiPhhoB03oA2gIR0C4UTIChew+dX2UKGgGR0DCC1XYL9deaAdN6ANoCEdAuFOLLr5ZbXV9lChoBkdAwUGDst03fmgHTegDaAhHQLhV4Z8KG+N1fZQoaAZHQMIIVbAckt5oB03oA2gIR0C4WDnEyckMdX2UKGgGR0DCdBZnrY5DaAdN6ANoCEdAuFqPWy1NQHV9lChoBkdAwvbrQcghbGgHTegDaAhHQLhc+nHNorZ1fZQoaAZHQMIUALkS26VoB03oA2gIR0C4X1JmEoOQdX2UKGgGR0DCXO3vhIe6aAdN6ANoCEdAuGGqYQarFXV9lChoBkdAwkWfdPci4mgHTegDaAhHQLhkAlqJuVJ1fZQoaAZHQMF9Bt6PbPBoB03oA2gIR0C4ZmBib2DhdX2UKGgGR0DCrAj8ejmCaAdN6ANoCEdAuGi6zqrzXnV9lChoBkdAws3Ag4ffXWgHTegDaAhHQLhrF9JBgNR1fZQoaAZHQMHeJbyhBZ9oB03oA2gIR0C4bXVXq7iAdX2UKGgGR0DCPS9VcUudaAdN6ANoCEdAuG/VddE9dXV9lChoBkdAwhceS/0ulGgHTegDaAhHQLhyMruYx+N1fZQoaAZHQMIRdWrOqvNoB03oA2gIR0C4dKukHlfadX2UKGgGR0Ci6WiZF5OaaAdN6ANoCEdAuHcFJNCZ4XV9lChoBkdAwlZuAmzBymgHTegDaAhHQLh5YsMRYih1fZQoaAZHQMFd6xBu4w1oB03oA2gIR0C4h4BODaoNdX2UKGgGR0DCm83TEzfraAdN6ANoCEdAuInWKNyYHHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2395307, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVsQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFUsRhZRoGXSUUpSMBl9zaGFwZZRLEYWUjANsb3eUaBEologAAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoC0sRhZRoGXSUUpSMBGhpZ2iUaBEologAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sRhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False\n False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False]", "_shape": [17], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVfwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihA6z5GHrnLfBeG/QkZaiCUzjANpbmOUihGlluXzqdyrAUtuDLN5lNnYAHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 100, "learning_starts": 100, "tau": 0.05, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x318100a60>", "add": "<function ReplayBuffer.add at 0x318100af0>", "sample": "<function ReplayBuffer.sample at 0x318100b80>", "_get_samples": "<function ReplayBuffer._get_samples at 0x318100c10>", "_maybe_cast_dtype": "<staticmethod object at 0x3180f6a90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x3180fee80>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGovVXNlcnMvYW1hbmthbmtyaXlhL0RvY3VtZW50cy9EZWVwIFJML2RlZXBybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMai9Vc2Vycy9hbWFua2Fua3JpeWEvRG9jdW1lbnRzL0RlZXAgUkwvZGVlcHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz80+LWI42jxhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "macOS-14.5-arm64-arm-64bit Darwin Kernel Version 23.5.0: Wed May 1 20:19:05 PDT 2024; root:xnu-10063.121.3~5/RELEASE_ARM64_T8112", "Python": "3.9.6", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a1caaf06640ccf12c04b3077e96399ae07c4b685e690684cd26f4ec19390bd7
|
3 |
+
size 1418453
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 9140.964570245333, "std_reward": 218.2285546836008, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-10T16:33:10.114156"}
|