Amankankriya commited on
Commit
04b1ad2
1 Parent(s): ac4000d

First Push

Browse files
Files changed (4) hide show
  1. README.md +35 -0
  2. SoccerTwos.onnx +3 -0
  3. config.json +1 -0
  4. configuration.yaml +81 -0
README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: ml-agents
3
+ tags:
4
+ - SoccerTwos
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - ML-Agents-SoccerTwos
8
+ ---
9
+
10
+ # **poca** Agent playing **SoccerTwos**
11
+ This is a trained model of a **poca** agent playing **SoccerTwos**
12
+ using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
13
+
14
+ ## Usage (with ML-Agents)
15
+ The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
16
+
17
+ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
18
+ - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
19
+ browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
20
+ - A *longer tutorial* to understand how works ML-Agents:
21
+ https://huggingface.co/learn/deep-rl-course/unit5/introduction
22
+
23
+ ### Resume the training
24
+ ```bash
25
+ mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
26
+ ```
27
+
28
+ ### Watch your Agent play
29
+ You can watch your agent **playing directly in your browser**
30
+
31
+ 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
32
+ 2. Step 1: Find your model_id: Amankankriya/ppo-SoccerTwos
33
+ 3. Step 2: Select your *.nn /*.onnx file
34
+ 4. Click on Watch the agent play 👀
35
+
SoccerTwos.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29b7e5a0c4439bb1b661a5aa54ab41ca43afd1734b76fae99fd72518bf247eb7
3
+ size 1764633
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default_settings": null, "behaviors": {"SoccerTwos": {"trainer_type": "poca", "hyperparameters": {"batch_size": 2048, "buffer_size": 20480, "learning_rate": 0.0015, "beta": 0.005, "epsilon": 0.2, "lambd": 0.99, "num_epoch": 3, "learning_rate_schedule": "constant", "beta_schedule": "constant", "epsilon_schedule": "constant"}, "network_settings": {"normalize": false, "hidden_units": 512, "num_layers": 2, "vis_encode_type": "simple", "memory": null, "goal_conditioning_type": "hyper", "deterministic": false}, "reward_signals": {"extrinsic": {"gamma": 0.99, "strength": 1.0, "network_settings": {"normalize": false, "hidden_units": 128, "num_layers": 2, "vis_encode_type": "simple", "memory": null, "goal_conditioning_type": "hyper", "deterministic": false}}}, "init_path": null, "keep_checkpoints": 5, "checkpoint_interval": 500000, "max_steps": 1000000, "time_horizon": 1000, "summary_freq": 10000, "threaded": false, "self_play": {"save_steps": 50000, "team_change": 200000, "swap_steps": 2000, "window": 10, "play_against_latest_model_ratio": 0.5, "initial_elo": 1200.0}, "behavioral_cloning": null}}, "env_settings": {"env_path": "./training-envs-executables/SoccerTwos/SoccerTwos.app", "env_args": null, "base_port": 5005, "num_envs": 1, "num_areas": 1, "seed": -1, "max_lifetime_restarts": 10, "restarts_rate_limit_n": 1, "restarts_rate_limit_period_s": 60}, "engine_settings": {"width": 84, "height": 84, "quality_level": 5, "time_scale": 20, "target_frame_rate": -1, "capture_frame_rate": 60, "no_graphics": true}, "environment_parameters": null, "checkpoint_settings": {"run_id": "SoccerTwos", "initialize_from": null, "load_model": false, "resume": false, "force": false, "train_model": false, "inference": false, "results_dir": "results"}, "torch_settings": {"device": null}, "debug": false}
configuration.yaml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ default_settings: null
2
+ behaviors:
3
+ SoccerTwos:
4
+ trainer_type: poca
5
+ hyperparameters:
6
+ batch_size: 2048
7
+ buffer_size: 20480
8
+ learning_rate: 0.0015
9
+ beta: 0.005
10
+ epsilon: 0.2
11
+ lambd: 0.99
12
+ num_epoch: 3
13
+ learning_rate_schedule: constant
14
+ beta_schedule: constant
15
+ epsilon_schedule: constant
16
+ network_settings:
17
+ normalize: false
18
+ hidden_units: 512
19
+ num_layers: 2
20
+ vis_encode_type: simple
21
+ memory: null
22
+ goal_conditioning_type: hyper
23
+ deterministic: false
24
+ reward_signals:
25
+ extrinsic:
26
+ gamma: 0.99
27
+ strength: 1.0
28
+ network_settings:
29
+ normalize: false
30
+ hidden_units: 128
31
+ num_layers: 2
32
+ vis_encode_type: simple
33
+ memory: null
34
+ goal_conditioning_type: hyper
35
+ deterministic: false
36
+ init_path: null
37
+ keep_checkpoints: 5
38
+ checkpoint_interval: 500000
39
+ max_steps: 1000000
40
+ time_horizon: 1000
41
+ summary_freq: 10000
42
+ threaded: false
43
+ self_play:
44
+ save_steps: 50000
45
+ team_change: 200000
46
+ swap_steps: 2000
47
+ window: 10
48
+ play_against_latest_model_ratio: 0.5
49
+ initial_elo: 1200.0
50
+ behavioral_cloning: null
51
+ env_settings:
52
+ env_path: ./training-envs-executables/SoccerTwos/SoccerTwos.app
53
+ env_args: null
54
+ base_port: 5005
55
+ num_envs: 1
56
+ num_areas: 1
57
+ seed: -1
58
+ max_lifetime_restarts: 10
59
+ restarts_rate_limit_n: 1
60
+ restarts_rate_limit_period_s: 60
61
+ engine_settings:
62
+ width: 84
63
+ height: 84
64
+ quality_level: 5
65
+ time_scale: 20
66
+ target_frame_rate: -1
67
+ capture_frame_rate: 60
68
+ no_graphics: true
69
+ environment_parameters: null
70
+ checkpoint_settings:
71
+ run_id: SoccerTwos
72
+ initialize_from: null
73
+ load_model: false
74
+ resume: false
75
+ force: false
76
+ train_model: false
77
+ inference: false
78
+ results_dir: results
79
+ torch_settings:
80
+ device: null
81
+ debug: false