File size: 11,739 Bytes
7f3269a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
"""
Orginally Taken verbatim from xformers library
https://github.com/facebookresearch/xformers/blob/bcb707576c6a80eaf850aa80e8643d3497ec2bc4/xformers/components/positional_embedding/rotary.py
The difference is that xformers seems to assume the inputs to be
(bs, head, seq_len, dim) while we assume (bs, seq_len, head, dim)
"""
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# CREDITS: This implementation is inspired by GPT-NeoX https://github.com/EleutherAI/gpt-neox
# NOTE: Almost the same right now, moving parts to Triton is the next step
import math
from typing import List, Optional, Tuple, Dict, Union
import torch
import dataclasses
from transformers.utils import logging
from transformers import PretrainedConfig
is_dacite_available = False
try:
import dacite
is_dacite_available = True
except ImportError:
pass
logger = logging.get_logger(__name__)
@dataclasses.dataclass
class LongRopeConfig(object):
short_factor: List[float]
long_factor: List[float]
original_max_position_embeddings: int
type: str = "longrope"
short_mscale: float = -1
long_mscale: float = -1
def __post_init__(self):
assert self.type in ("longrope", "su"), f"Invalid type {self.type} for LongRopeConfig. Expected longrope / su"
@classmethod
def from_dict(cls, config_dict: Dict[str, Union[float, List[float], int]]) -> "LongRopeConfig":
if is_dacite_available:
# Preferred since we can also type check the input
return dacite.from_dict(data_class=cls, data=config_dict)
kwargs = {}
for field in dataclasses.fields(cls):
if field.name in config_dict:
if field.init:
kwargs[field.name] = config_dict[field.name]
else:
raise ValueError(f"Field {field.name} is not initiable")
else:
if field.default is dataclasses.MISSING:
raise ValueError(f"Field {field.name} is required")
extra_keys = set(config_dict.keys()) - set(kwargs.keys())
if len(extra_keys) > 0:
for key in extra_keys:
logger.error(f"Unrecognized key {key} in config_dict")
raise ValueError(f"Unrecognized keys in config_dict")
return cls(**kwargs)
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=x1.ndim - 1)
@torch.jit.script
def apply_rotary_pos_emb(x, cos, sin, seq_dimension: int):
# NOTE: This could probably be moved to Triton
if seq_dimension == 0:
cos = cos[: x.shape[0], None, None, :]
sin = sin[: x.shape[0], None, None, :]
elif seq_dimension == 1:
# Handle a possible sequence length mismatch in between q and k
cos = cos[None, : x.shape[1], None, :]
sin = sin[None, : x.shape[1], None, :]
elif seq_dimension == 2:
cos = cos[None, None, : x.shape[2], :]
sin = sin[None, None, : x.shape[2], :]
return (x * cos) + (rotate_half(x) * sin)
class RotaryEmbedding(torch.nn.Module):
"""
Adapted from the xformers library
The rotary position embeddings from RoFormer_ (Su et. al).
A crucial insight from the method is that the query and keys are
transformed by rotation matrices which depend on the relative positions.
Other implementations are available in the Rotary Transformer repo_ and in
GPT-NeoX_, GPT-NeoX was an inspiration
.. _RoFormer: https://arxiv.org/abs/2104.09864
.. _repo: https://github.com/ZhuiyiTechnology/roformer
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
.. warning: Please note that this embedding is not registered on purpose, as it is transformative
(it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis
# Arguments
:param dim_mode: head dimention
:param max_seq_len:
:param default_seq_dimension: which dim is the sequence length
:param dtype: cos/sin dtype
:param use_fused_kernel: if to use customized fused kernel.
Note: if used, q, k will be modified inplace. Ok for both forward & backward.
"""
def __init__(
self,
dim_model: int,
*,
max_seq_len: Optional[int] = None,
dtype: Optional[torch.dtype] = None,
base=10000,
position_scale=1,
device: Optional[torch.device] = None,
longrope_config: Optional[LongRopeConfig] = None,
):
super().__init__()
self.base = base
self.dim_model = dim_model
self.max_seq_len = max_seq_len
self.longrope_config = longrope_config
if self.is_longrope:
# Keep the maximum range vector, and slice from it as needed
self.register_buffer(
"range_vector",
torch.arange(max_seq_len, device=device, dtype=torch.float32),
persistent=False
)
self.register_buffer(
"short_factors",
torch.tensor(self.longrope_config.short_factor, dtype=torch.float32),
persistent=False
)
self.register_buffer(
"long_factors",
torch.tensor(self.longrope_config.long_factor, dtype=torch.float32),
persistent=False
)
else:
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (base ** (torch.arange(0, dim_model, 2).float().to(device) / self.dim_model))
self.register_buffer("inv_freq", inv_freq)
self.position_scale = position_scale
if not self.is_longrope:
dtype = dtype or torch.get_default_dtype()
self._set_cos_sin_cache(
seq_len=max_seq_len,
device=self.inv_freq.device,
dtype=dtype,
)
@property
def is_longrope(self):
return self.longrope_config is not None
@property
def original_max_seq_len(self):
if self.longrope_config is not None:
return self.longrope_config.original_max_position_embeddings
logger.warning_once(
(
"``original_max_seq_len'' is being accessed, but longrope_config has not been set. "
"Please only do this if you are sure about the context."
)
)
return self.max_seq_len
def get_range_vector(self, seq_len: int, device: torch.device):
if self.is_longrope:
assert seq_len < self.range_vector.shape[0], f"Found seq_len {seq_len} greater than max_seq_len {self.range_vector.shape[0]}"
if self.range_vector.device != device:
self.range_vector = self.range_vector.to(device)
return self.range_vector[:seq_len]
return torch.arange(seq_len, device=device, dtype=torch.float32)
def _calc_mscale(self, scale: torch.Tensor) -> torch.Tensor:
if scale <= 1.0:
return 1.0
return math.sqrt(1 + math.log(scale) / math.log(self.original_max_seq_len))
def _set_cos_sin_cache(
self,
seq_len: int,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
dtype = dtype or torch.get_default_dtype()
self.max_seq_len_cached = seq_len
t = (torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) * self.position_scale).type_as(self.inv_freq)
device_type = device.type if device is not None else "cpu"
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
# shape: (seq_len, dim_model // 2)
freqs = torch.outer(t, self.inv_freq)
# shape: (seq_len, dim_model)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
self.register_buffer("cos_cached", cos.to(dtype), persistent=False)
self.register_buffer("sin_cached", sin.to(dtype), persistent=False)
def forward(
self, q: torch.Tensor,
k: torch.Tensor,
seq_dimension: int = 1,
seqlen_offset: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""q, k does not include `seqlen_offset`
q: Either (bs, seq_len, num_heads, head_dim) or (seq_len, bs, num_heads, head_dim)
k: Either (bs, seq_len, num_heads, head_dim) or (seq_len, bs, num_heads, head_dim)
"""
if seq_dimension < 0:
seq_dimension = k.ndim + seq_dimension
assert seq_dimension in (0, 1, 2)
seq_len = k.shape[seq_dimension] + seqlen_offset
if self.is_longrope:
if seq_len > self.original_max_seq_len:
t = self.get_range_vector(seq_len, device=q.device)
rescale_factors = self.long_factors.to(q.device)
long_mscale = self.longrope_config.long_mscale
mscale = long_mscale if long_mscale > 0 else self._calc_mscale(self.max_seq_len / self.original_max_seq_len)
else:
t = self.get_range_vector(self.original_max_seq_len, device=q.device)
rescale_factors = self.short_factors.to(q.device)
short_mscale = self.longrope_config.short_mscale
mscale = short_mscale if short_mscale > 0 else 1.0
assert rescale_factors.shape == (self.dim_model // 2, ), (
f"misaligned shape for LongRoPE rescale factors:\n"
f"\tExpected {(self.dim_model // 2, )}, got {rescale_factors.shape}."
)
inv_freq = 1.0 / (rescale_factors * (self.base ** (torch.arange(0, self.dim_model, 2).float().to(q.device) / self.dim_model)))
device_type = q.device.type if q.device is not None else "cpu"
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = torch.outer(t, inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * mscale
sin = emb.sin() * mscale
cos_cached = cos.to(q.dtype)
sin_cached = sin.to(q.dtype)
else:
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(
seq_len=seq_len,
device=k.device,
dtype=k.dtype,
)
cos_cached = self.cos_cached
sin_cached = self.sin_cached
return (
apply_rotary_pos_emb(
q, cos_cached[seqlen_offset:seq_len], sin_cached[seqlen_offset:seq_len], seq_dimension=seq_dimension
).to(q.dtype),
apply_rotary_pos_emb(
k, cos_cached[seqlen_offset:seq_len], sin_cached[seqlen_offset:seq_len], seq_dimension=seq_dimension
).to(k.dtype),
)
@classmethod
def from_config(cls, config: PretrainedConfig) -> "RotaryEmbedding":
kwargs = dict(
dim_model=config.hidden_size // config.num_attention_heads,
max_seq_len=config.max_position_embeddings,
base=config.rope_embedding_base,
position_scale=config.rope_position_scale,
)
if config.rope_scaling is not None:
kwargs["longrope_config"] = LongRopeConfig.from_dict(config.rope_scaling)
return cls(**kwargs)
|