--- license: mit language: - en pipeline_tag: text2text-generation library_name: adapter-transformers --- # Model Card for Model ID This is an English grammar correction model. ## Model Details ### Model Description - **Developed by:** Amin Rahmani - **Model type:** T5 - **Language(s) (NLP):** English - **License:** MIT ## How to Get Started with the Model from happytransformer import HappyTextToText happy_tt = HappyTextToText("T5", ".\PATH TO MODEL") from happytransformer import TTSettings beam_settings = TTSettings(num_beams=8, min_length=1, max_length=100) input_text_1 = "grammar: hi dear" output_text_1 = happy_tt.generate_text(input_text_1, args=beam_settings) print(output_text_1.text) [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] validation loss: 0.04 learning rate: epochs: 3 ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** RTX 3090 ## Technical Specifications [optional]