Amir13 commited on
Commit
2e41e01
1 Parent(s): f44ca5d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: xlm-roberta-base-wnut2017
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlm-roberta-base-wnut2017
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2943
23
+ - Precision: 0.5430
24
+ - Recall: 0.4181
25
+ - F1: 0.4724
26
+ - Accuracy: 0.9379
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 106 | 0.3715 | 0.0667 | 0.0012 | 0.0024 | 0.9119 |
58
+ | No log | 2.0 | 212 | 0.3279 | 0.3482 | 0.1783 | 0.2359 | 0.9217 |
59
+ | No log | 3.0 | 318 | 0.3008 | 0.5574 | 0.3627 | 0.4394 | 0.9344 |
60
+ | No log | 4.0 | 424 | 0.2884 | 0.5226 | 0.3614 | 0.4274 | 0.9363 |
61
+ | 0.2149 | 5.0 | 530 | 0.2943 | 0.5430 | 0.4181 | 0.4724 | 0.9379 |
62
+ | 0.2149 | 6.0 | 636 | 0.3180 | 0.5338 | 0.3711 | 0.4378 | 0.9377 |
63
+ | 0.2149 | 7.0 | 742 | 0.3090 | 0.4993 | 0.4277 | 0.4607 | 0.9365 |
64
+ | 0.2149 | 8.0 | 848 | 0.3300 | 0.5300 | 0.4048 | 0.4590 | 0.9380 |
65
+ | 0.2149 | 9.0 | 954 | 0.3365 | 0.4938 | 0.3843 | 0.4322 | 0.9367 |
66
+ | 0.0623 | 10.0 | 1060 | 0.3363 | 0.5028 | 0.4313 | 0.4643 | 0.9363 |
67
+ | 0.0623 | 11.0 | 1166 | 0.3567 | 0.4992 | 0.3880 | 0.4366 | 0.9356 |
68
+ | 0.0623 | 12.0 | 1272 | 0.3681 | 0.5164 | 0.3988 | 0.4500 | 0.9375 |
69
+ | 0.0623 | 13.0 | 1378 | 0.3698 | 0.5086 | 0.3928 | 0.4432 | 0.9376 |
70
+ | 0.0623 | 14.0 | 1484 | 0.3690 | 0.5157 | 0.4157 | 0.4603 | 0.9380 |
71
+ | 0.0303 | 15.0 | 1590 | 0.3744 | 0.5045 | 0.4072 | 0.4507 | 0.9375 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.26.1
77
+ - Pytorch 1.13.1+cu116
78
+ - Datasets 2.9.0
79
+ - Tokenizers 0.13.2