update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: xlm-roberta-base-wnut2017
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlm-roberta-base-wnut2017
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2943
|
23 |
+
- Precision: 0.5430
|
24 |
+
- Recall: 0.4181
|
25 |
+
- F1: 0.4724
|
26 |
+
- Accuracy: 0.9379
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 106 | 0.3715 | 0.0667 | 0.0012 | 0.0024 | 0.9119 |
|
58 |
+
| No log | 2.0 | 212 | 0.3279 | 0.3482 | 0.1783 | 0.2359 | 0.9217 |
|
59 |
+
| No log | 3.0 | 318 | 0.3008 | 0.5574 | 0.3627 | 0.4394 | 0.9344 |
|
60 |
+
| No log | 4.0 | 424 | 0.2884 | 0.5226 | 0.3614 | 0.4274 | 0.9363 |
|
61 |
+
| 0.2149 | 5.0 | 530 | 0.2943 | 0.5430 | 0.4181 | 0.4724 | 0.9379 |
|
62 |
+
| 0.2149 | 6.0 | 636 | 0.3180 | 0.5338 | 0.3711 | 0.4378 | 0.9377 |
|
63 |
+
| 0.2149 | 7.0 | 742 | 0.3090 | 0.4993 | 0.4277 | 0.4607 | 0.9365 |
|
64 |
+
| 0.2149 | 8.0 | 848 | 0.3300 | 0.5300 | 0.4048 | 0.4590 | 0.9380 |
|
65 |
+
| 0.2149 | 9.0 | 954 | 0.3365 | 0.4938 | 0.3843 | 0.4322 | 0.9367 |
|
66 |
+
| 0.0623 | 10.0 | 1060 | 0.3363 | 0.5028 | 0.4313 | 0.4643 | 0.9363 |
|
67 |
+
| 0.0623 | 11.0 | 1166 | 0.3567 | 0.4992 | 0.3880 | 0.4366 | 0.9356 |
|
68 |
+
| 0.0623 | 12.0 | 1272 | 0.3681 | 0.5164 | 0.3988 | 0.4500 | 0.9375 |
|
69 |
+
| 0.0623 | 13.0 | 1378 | 0.3698 | 0.5086 | 0.3928 | 0.4432 | 0.9376 |
|
70 |
+
| 0.0623 | 14.0 | 1484 | 0.3690 | 0.5157 | 0.4157 | 0.4603 | 0.9380 |
|
71 |
+
| 0.0303 | 15.0 | 1590 | 0.3744 | 0.5045 | 0.4072 | 0.4507 | 0.9375 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.26.1
|
77 |
+
- Pytorch 1.13.1+cu116
|
78 |
+
- Datasets 2.9.0
|
79 |
+
- Tokenizers 0.13.2
|