AmmarAl commited on
Commit
1a5388c
1 Parent(s): 35d93ba

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -40.00 +/- 20.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c084117c54c7080c6cecaae8a05ef3542365520c41a35dfa1050fce3d6ba3c17
3
+ size 124068
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000029A4DEBAE50>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x0000029A4DEBBD80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1703690823198829000,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXgv4vufuOD/JpEE+T6pbv6PPTb8upUE+cO47v36Jiz7BokE+avUlPjrQkj6moUE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5euaP20mIT/Y0Iu/9sGrvhE5uD+3tRa981kZP70QCL95abg+LPXJP0Cdsb/Y0Iu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAA6Rjw/Y0NCPw+BYT/k9vw+81PQP3rxoz+uUhW/Xgv4vufuOD/JpEE+zQdGvMHWFzvN7aa8eFSCPBcR8bwFWbo9AGQrPHI8Ab0u9/O7L8wdPvTsij9+cTu/yFvrv02SXj+h7uq/UNP+P0+qW7+jz02/LqVBPjESR7x7WRo7u7emvISJgzzJmvO8vJi6PZpbRjwDePq8Evrzuz0dOj1Qdgc92o9dv+5GX78RsJG/kAuHvxyE3z9w7ju/fomLPsGiQT7fiES88i4ZO8TcqryJrYI8KU70vNBvuj1xmk882Hf6vLmO97sy+YA+oin6u7g1AT9dXEe/A43Kv6HCCj9ERBS/avUlPjrQkj6moUE+QN9DvFIvGTu3Gaq8la2CPMOS87y8mLo9m1tGPAN4+rzejPe7lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.48446172 0.72239536 0.18910517]\n [-0.85806745 -0.80394953 0.18910667]\n [-0.734107 0.27253336 0.18909742]\n [ 0.162069 0.2867449 0.1890932 ]]",
34
+ "desired_goal": "[[ 1.2103239 0.6294926 -1.0923109 ]\n [-0.33546418 1.4392415 -0.03679439]\n [ 0.59902877 -0.5315054 0.3601797 ]\n [ 1.5777946 -1.3876114 -1.0923109 ]]",
35
+ "observation": "[[ 0.7354466 0.75884074 0.8808755 0.49407113 1.6275619 1.2808068\n -0.58329284 -0.48446172 0.72239536 0.18910517 -0.01208682 0.00231688\n -0.02037706 0.01590942 -0.02942709 0.0909901 0.01046085 -0.03155179\n -0.00744524]\n [ 0.15409921 1.0853562 -0.7322005 -1.8387384 0.8694199 -1.8354074\n 1.9908237 -0.85806745 -0.80394953 0.18910667 -0.01215033 0.00235519\n -0.02035128 0.01605678 -0.02973689 0.09111163 0.0121068 -0.0305748\n -0.00744558]\n [ 0.04543804 0.03307182 -0.86547625 -0.87217605 -1.1381856 -1.0550404\n 1.7462192 -0.734107 0.27253336 0.18909742 -0.01199552 0.00233739\n -0.02085722 0.01595189 -0.02982243 0.09103358 0.0126711 -0.03057472\n -0.00755486]\n [ 0.2519012 -0.00763436 0.50472593 -0.7787531 -1.5824283 0.5420323\n -0.57916665 0.162069 0.2867449 0.1890932 -0.01195508 0.00233742\n -0.02076421 0.01595191 -0.02973307 0.09111163 0.0121068 -0.0305748\n -0.00755463]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOKfwPe2U4boK16M82FrePRDjrTwK16M8gO2KPRzdmT0K16M8tfvPPYtkEr4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtPoMvhLPwT0K16M8UDvTPYylv719Tlk+m6z+vQKxxD1vvwE+L4sYvoUu570K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOKfwPe2U4boK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANha3j0Q4608CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACA7Yo9HN2ZPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtfvPPYtkEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.11750644 -0.00172105 0.02 ]\n [ 0.10857171 0.02122644 0.02 ]\n [ 0.06783581 0.07512876 0.02 ]\n [ 0.10155431 -0.14296167 0.02 ]]",
45
+ "desired_goal": "[[-0.1376751 0.09463324 0.02 ]\n [ 0.10314047 -0.09357747 0.21221347]\n [-0.12435266 0.09604074 0.12670682]\n [-0.14896844 -0.1128817 0.02 ]]",
46
+ "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.17506444e-01\n -1.72105210e-03 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.08571708e-01\n 2.12264359e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 6.78358078e-02\n 7.51287639e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.01554312e-01\n -1.42961666e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C7B9eTq0MPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CHojbBXTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CHkdJaq0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7COMZDRdAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CKyRnvlVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CU8hTwUhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CU6eGwiadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CbqmTC+DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CY4a1kUcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CjJ1Ng0CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ci+kP+XJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CrO85CF9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CoZvP1L8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Cyh7zCk5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CzN9x6v8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7C6H1zySWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7C3nEVFhHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DBvQ8fV7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DB5gG8mKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DIhcE/0NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DFg7DEWJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DPsMNMGpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DP+IMz/IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DWpIlMRIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DTaSX+l1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DdhdMTN/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ddy3XqZ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DkGUbDMvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C7DkVrdnCgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DhSncclxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DrXvUjLTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Dsz5j6N3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Dz4gaFVUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DwvzSThYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D67EgntwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D6185S3tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EB5h8YygdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D+rtE5QxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EIx28qWkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EI3/o7mudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EP3e7+UAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7ENER8MNMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EXRmTTvzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EXXvYvnKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EeDRx95RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EaxWcSXddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ek5jH4oJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7ElI6CDmKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EsDRhMJydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EoqLsKLLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ey0bcXWOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EzG3BpHqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7E508FINFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7E2SobXHzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FAe7HyVfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FBPDLr5ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FH4An2IwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FE+qioKldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FPEz9CNTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FPtxQzk7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C7FP/LgXMydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FWRnFo+OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FTM/2TPjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FdZSm65HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Fd4AwPAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FkuSGJvYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FhnnyNGWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Fr08FINFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Frw176YWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FyPkFOfvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FvZSWJJodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F5jiCJ40dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F54AwPAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GAc4DLbIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F9lFH8TBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GHuWBz3idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GIimuTzNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GO6J/G2kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GLY3zcyndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GVjHbRF7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GVoO+ZgHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GcJAUtZndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GZNnCfpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GjW1D0DmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GnD5j6N3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GtWVRk3CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Gp2EkB0ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Gz9PtUn5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G0KjesPrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G6yfcvdudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G3RNRFZxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HBdf9gnddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HB+Q+2VndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HIuZTho/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HFjo2XLNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HPzAWSEEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HQ5qM3qBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HXu6I3zddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HUeAiFCcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HeqTKT0QdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVagIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVWM6XFVzZXJzXEFtbWFyXG1pbmljb25kYTNcZW52c1xybFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:192aa7a2c8b0df46b99aed745b5b9e8f81e4c831bd426d85bc5d5c166951f536
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:199be6aed6607e8fc6d626cee84e665a96c87ceb064e4544c203bc15840e1910
3
+ size 53359
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb4dde0c1ad63b7740276006a06cc491b21b407ea6c889928c223ec77ddad79f
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Windows-10-10.0.19045-SP0 10.0.19045
2
+ - Python: 3.9.18
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.2
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.2
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.23.1
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000029A4DEBAE50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000029A4DEBBD80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703690823198829000, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXgv4vufuOD/JpEE+T6pbv6PPTb8upUE+cO47v36Jiz7BokE+avUlPjrQkj6moUE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5euaP20mIT/Y0Iu/9sGrvhE5uD+3tRa981kZP70QCL95abg+LPXJP0Cdsb/Y0Iu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAA6Rjw/Y0NCPw+BYT/k9vw+81PQP3rxoz+uUhW/Xgv4vufuOD/JpEE+zQdGvMHWFzvN7aa8eFSCPBcR8bwFWbo9AGQrPHI8Ab0u9/O7L8wdPvTsij9+cTu/yFvrv02SXj+h7uq/UNP+P0+qW7+jz02/LqVBPjESR7x7WRo7u7emvISJgzzJmvO8vJi6PZpbRjwDePq8Evrzuz0dOj1Qdgc92o9dv+5GX78RsJG/kAuHvxyE3z9w7ju/fomLPsGiQT7fiES88i4ZO8TcqryJrYI8KU70vNBvuj1xmk882Hf6vLmO97sy+YA+oin6u7g1AT9dXEe/A43Kv6HCCj9ERBS/avUlPjrQkj6moUE+QN9DvFIvGTu3Gaq8la2CPMOS87y8mLo9m1tGPAN4+rzejPe7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.48446172 0.72239536 0.18910517]\n [-0.85806745 -0.80394953 0.18910667]\n [-0.734107 0.27253336 0.18909742]\n [ 0.162069 0.2867449 0.1890932 ]]", "desired_goal": "[[ 1.2103239 0.6294926 -1.0923109 ]\n [-0.33546418 1.4392415 -0.03679439]\n [ 0.59902877 -0.5315054 0.3601797 ]\n [ 1.5777946 -1.3876114 -1.0923109 ]]", "observation": "[[ 0.7354466 0.75884074 0.8808755 0.49407113 1.6275619 1.2808068\n -0.58329284 -0.48446172 0.72239536 0.18910517 -0.01208682 0.00231688\n -0.02037706 0.01590942 -0.02942709 0.0909901 0.01046085 -0.03155179\n -0.00744524]\n [ 0.15409921 1.0853562 -0.7322005 -1.8387384 0.8694199 -1.8354074\n 1.9908237 -0.85806745 -0.80394953 0.18910667 -0.01215033 0.00235519\n -0.02035128 0.01605678 -0.02973689 0.09111163 0.0121068 -0.0305748\n -0.00744558]\n [ 0.04543804 0.03307182 -0.86547625 -0.87217605 -1.1381856 -1.0550404\n 1.7462192 -0.734107 0.27253336 0.18909742 -0.01199552 0.00233739\n -0.02085722 0.01595189 -0.02982243 0.09103358 0.0126711 -0.03057472\n -0.00755486]\n [ 0.2519012 -0.00763436 0.50472593 -0.7787531 -1.5824283 0.5420323\n -0.57916665 0.162069 0.2867449 0.1890932 -0.01195508 0.00233742\n -0.02076421 0.01595191 -0.02973307 0.09111163 0.0121068 -0.0305748\n -0.00755463]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOKfwPe2U4boK16M82FrePRDjrTwK16M8gO2KPRzdmT0K16M8tfvPPYtkEr4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtPoMvhLPwT0K16M8UDvTPYylv719Tlk+m6z+vQKxxD1vvwE+L4sYvoUu570K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOKfwPe2U4boK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANha3j0Q4608CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACA7Yo9HN2ZPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtfvPPYtkEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.11750644 -0.00172105 0.02 ]\n [ 0.10857171 0.02122644 0.02 ]\n [ 0.06783581 0.07512876 0.02 ]\n [ 0.10155431 -0.14296167 0.02 ]]", "desired_goal": "[[-0.1376751 0.09463324 0.02 ]\n [ 0.10314047 -0.09357747 0.21221347]\n [-0.12435266 0.09604074 0.12670682]\n [-0.14896844 -0.1128817 0.02 ]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.17506444e-01\n -1.72105210e-03 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.08571708e-01\n 2.12264359e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 6.78358078e-02\n 7.51287639e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.01554312e-01\n -1.42961666e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C7B9eTq0MPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CHojbBXTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CHkdJaq0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7COMZDRdAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CKyRnvlVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CU8hTwUhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CU6eGwiadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CbqmTC+DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CY4a1kUcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CjJ1Ng0CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ci+kP+XJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CrO85CF9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CoZvP1L8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Cyh7zCk5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CzN9x6v8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7C6H1zySWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7C3nEVFhHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DBvQ8fV7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DB5gG8mKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DIhcE/0NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DFg7DEWJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DPsMNMGpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DP+IMz/IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DWpIlMRIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DTaSX+l1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DdhdMTN/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ddy3XqZ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DkGUbDMvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C7DkVrdnCgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DhSncclxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DrXvUjLTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Dsz5j6N3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Dz4gaFVUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DwvzSThYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D67EgntwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D6185S3tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EB5h8YygdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D+rtE5QxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EIx28qWkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EI3/o7mudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EP3e7+UAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7ENER8MNMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EXRmTTvzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EXXvYvnKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EeDRx95RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EaxWcSXddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ek5jH4oJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7ElI6CDmKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EsDRhMJydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EoqLsKLLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ey0bcXWOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EzG3BpHqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7E508FINFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7E2SobXHzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FAe7HyVfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FBPDLr5ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FH4An2IwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FE+qioKldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FPEz9CNTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FPtxQzk7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C7FP/LgXMydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FWRnFo+OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FTM/2TPjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FdZSm65HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Fd4AwPAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FkuSGJvYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FhnnyNGWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Fr08FINFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Frw176YWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FyPkFOfvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FvZSWJJodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F5jiCJ40dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F54AwPAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GAc4DLbIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F9lFH8TBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GHuWBz3idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GIimuTzNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GO6J/G2kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GLY3zcyndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GVjHbRF7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GVoO+ZgHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GcJAUtZndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GZNnCfpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GjW1D0DmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GnD5j6N3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GtWVRk3CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Gp2EkB0ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Gz9PtUn5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G0KjesPrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G6yfcvdudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G3RNRFZxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HBdf9gnddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HB+Q+2VndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HIuZTho/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HFjo2XLNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HPzAWSEEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HQ5qM3qBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HXu6I3zddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HUeAiFCcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HeqTKT0QdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVagIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVWM6XFVzZXJzXEFtbWFyXG1pbmljb25kYTNcZW52c1xybFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.9.18", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.2", "GPU Enabled": "True", "Numpy": "1.26.2", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.1"}}
replay.mp4 ADDED
Binary file (858 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -40.0, "std_reward": 20.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-27T21:03:48.302570"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a642740a01104c75f2a60efa1a1310d49d2695228eced6d4d37536072953f677
3
+ size 2953