Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlace-v3.zip +3 -0
- a2c-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlace-v3/data +97 -0
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlace-v3/policy.pth +3 -0
- a2c-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlace-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -40.00 +/- 20.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c084117c54c7080c6cecaae8a05ef3542365520c41a35dfa1050fce3d6ba3c17
|
3 |
+
size 124068
|
a2c-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
a2c-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000029A4DEBAE50>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x0000029A4DEBBD80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1703690823198829000,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXgv4vufuOD/JpEE+T6pbv6PPTb8upUE+cO47v36Jiz7BokE+avUlPjrQkj6moUE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5euaP20mIT/Y0Iu/9sGrvhE5uD+3tRa981kZP70QCL95abg+LPXJP0Cdsb/Y0Iu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAA6Rjw/Y0NCPw+BYT/k9vw+81PQP3rxoz+uUhW/Xgv4vufuOD/JpEE+zQdGvMHWFzvN7aa8eFSCPBcR8bwFWbo9AGQrPHI8Ab0u9/O7L8wdPvTsij9+cTu/yFvrv02SXj+h7uq/UNP+P0+qW7+jz02/LqVBPjESR7x7WRo7u7emvISJgzzJmvO8vJi6PZpbRjwDePq8Evrzuz0dOj1Qdgc92o9dv+5GX78RsJG/kAuHvxyE3z9w7ju/fomLPsGiQT7fiES88i4ZO8TcqryJrYI8KU70vNBvuj1xmk882Hf6vLmO97sy+YA+oin6u7g1AT9dXEe/A43Kv6HCCj9ERBS/avUlPjrQkj6moUE+QN9DvFIvGTu3Gaq8la2CPMOS87y8mLo9m1tGPAN4+rzejPe7lGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[-0.48446172 0.72239536 0.18910517]\n [-0.85806745 -0.80394953 0.18910667]\n [-0.734107 0.27253336 0.18909742]\n [ 0.162069 0.2867449 0.1890932 ]]",
|
34 |
+
"desired_goal": "[[ 1.2103239 0.6294926 -1.0923109 ]\n [-0.33546418 1.4392415 -0.03679439]\n [ 0.59902877 -0.5315054 0.3601797 ]\n [ 1.5777946 -1.3876114 -1.0923109 ]]",
|
35 |
+
"observation": "[[ 0.7354466 0.75884074 0.8808755 0.49407113 1.6275619 1.2808068\n -0.58329284 -0.48446172 0.72239536 0.18910517 -0.01208682 0.00231688\n -0.02037706 0.01590942 -0.02942709 0.0909901 0.01046085 -0.03155179\n -0.00744524]\n [ 0.15409921 1.0853562 -0.7322005 -1.8387384 0.8694199 -1.8354074\n 1.9908237 -0.85806745 -0.80394953 0.18910667 -0.01215033 0.00235519\n -0.02035128 0.01605678 -0.02973689 0.09111163 0.0121068 -0.0305748\n -0.00744558]\n [ 0.04543804 0.03307182 -0.86547625 -0.87217605 -1.1381856 -1.0550404\n 1.7462192 -0.734107 0.27253336 0.18909742 -0.01199552 0.00233739\n -0.02085722 0.01595189 -0.02982243 0.09103358 0.0126711 -0.03057472\n -0.00755486]\n [ 0.2519012 -0.00763436 0.50472593 -0.7787531 -1.5824283 0.5420323\n -0.57916665 0.162069 0.2867449 0.1890932 -0.01195508 0.00233742\n -0.02076421 0.01595191 -0.02973307 0.09111163 0.0121068 -0.0305748\n -0.00755463]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOKfwPe2U4boK16M82FrePRDjrTwK16M8gO2KPRzdmT0K16M8tfvPPYtkEr4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtPoMvhLPwT0K16M8UDvTPYylv719Tlk+m6z+vQKxxD1vvwE+L4sYvoUu570K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOKfwPe2U4boK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANha3j0Q4608CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACA7Yo9HN2ZPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtfvPPYtkEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[ 0.11750644 -0.00172105 0.02 ]\n [ 0.10857171 0.02122644 0.02 ]\n [ 0.06783581 0.07512876 0.02 ]\n [ 0.10155431 -0.14296167 0.02 ]]",
|
45 |
+
"desired_goal": "[[-0.1376751 0.09463324 0.02 ]\n [ 0.10314047 -0.09357747 0.21221347]\n [-0.12435266 0.09604074 0.12670682]\n [-0.14896844 -0.1128817 0.02 ]]",
|
46 |
+
"observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.17506444e-01\n -1.72105210e-03 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.08571708e-01\n 2.12264359e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 6.78358078e-02\n 7.51287639e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.01554312e-01\n -1.42961666e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C7B9eTq0MPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CHojbBXTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CHkdJaq0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7COMZDRdAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CKyRnvlVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CU8hTwUhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CU6eGwiadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CbqmTC+DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CY4a1kUcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CjJ1Ng0CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ci+kP+XJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CrO85CF9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CoZvP1L8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Cyh7zCk5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CzN9x6v8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7C6H1zySWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7C3nEVFhHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DBvQ8fV7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DB5gG8mKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DIhcE/0NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DFg7DEWJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DPsMNMGpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DP+IMz/IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DWpIlMRIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DTaSX+l1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DdhdMTN/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ddy3XqZ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DkGUbDMvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C7DkVrdnCgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DhSncclxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DrXvUjLTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Dsz5j6N3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Dz4gaFVUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DwvzSThYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D67EgntwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D6185S3tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EB5h8YygdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D+rtE5QxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EIx28qWkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EI3/o7mudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EP3e7+UAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7ENER8MNMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EXRmTTvzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EXXvYvnKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EeDRx95RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EaxWcSXddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ek5jH4oJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7ElI6CDmKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EsDRhMJydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EoqLsKLLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ey0bcXWOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EzG3BpHqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7E508FINFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7E2SobXHzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FAe7HyVfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FBPDLr5ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FH4An2IwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FE+qioKldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FPEz9CNTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FPtxQzk7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C7FP/LgXMydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FWRnFo+OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FTM/2TPjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FdZSm65HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Fd4AwPAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FkuSGJvYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FhnnyNGWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Fr08FINFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Frw176YWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FyPkFOfvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FvZSWJJodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F5jiCJ40dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F54AwPAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GAc4DLbIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F9lFH8TBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GHuWBz3idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GIimuTzNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GO6J/G2kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GLY3zcyndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GVjHbRF7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GVoO+ZgHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GcJAUtZndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GZNnCfpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GjW1D0DmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GnD5j6N3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GtWVRk3CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Gp2EkB0ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Gz9PtUn5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G0KjesPrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G6yfcvdudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G3RNRFZxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HBdf9gnddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HB+Q+2VndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HIuZTho/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HFjo2XLNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HPzAWSEEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HQ5qM3qBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HXu6I3zddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HUeAiFCcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HeqTKT0QdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True True]",
|
82 |
+
"bounded_above": "[ True True True True]",
|
83 |
+
"_shape": [
|
84 |
+
4
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVagIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVWM6XFVzZXJzXEFtbWFyXG1pbmljb25kYTNcZW52c1xybFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:192aa7a2c8b0df46b99aed745b5b9e8f81e4c831bd426d85bc5d5c166951f536
|
3 |
+
size 52079
|
a2c-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:199be6aed6607e8fc6d626cee84e665a96c87ceb064e4544c203bc15840e1910
|
3 |
+
size 53359
|
a2c-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb4dde0c1ad63b7740276006a06cc491b21b407ea6c889928c223ec77ddad79f
|
3 |
+
size 864
|
a2c-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Windows-10-10.0.19045-SP0 10.0.19045
|
2 |
+
- Python: 3.9.18
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.2
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.2
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.23.1
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000029A4DEBAE50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000029A4DEBBD80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703690823198829000, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXgv4vufuOD/JpEE+T6pbv6PPTb8upUE+cO47v36Jiz7BokE+avUlPjrQkj6moUE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5euaP20mIT/Y0Iu/9sGrvhE5uD+3tRa981kZP70QCL95abg+LPXJP0Cdsb/Y0Iu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAA6Rjw/Y0NCPw+BYT/k9vw+81PQP3rxoz+uUhW/Xgv4vufuOD/JpEE+zQdGvMHWFzvN7aa8eFSCPBcR8bwFWbo9AGQrPHI8Ab0u9/O7L8wdPvTsij9+cTu/yFvrv02SXj+h7uq/UNP+P0+qW7+jz02/LqVBPjESR7x7WRo7u7emvISJgzzJmvO8vJi6PZpbRjwDePq8Evrzuz0dOj1Qdgc92o9dv+5GX78RsJG/kAuHvxyE3z9w7ju/fomLPsGiQT7fiES88i4ZO8TcqryJrYI8KU70vNBvuj1xmk882Hf6vLmO97sy+YA+oin6u7g1AT9dXEe/A43Kv6HCCj9ERBS/avUlPjrQkj6moUE+QN9DvFIvGTu3Gaq8la2CPMOS87y8mLo9m1tGPAN4+rzejPe7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.48446172 0.72239536 0.18910517]\n [-0.85806745 -0.80394953 0.18910667]\n [-0.734107 0.27253336 0.18909742]\n [ 0.162069 0.2867449 0.1890932 ]]", "desired_goal": "[[ 1.2103239 0.6294926 -1.0923109 ]\n [-0.33546418 1.4392415 -0.03679439]\n [ 0.59902877 -0.5315054 0.3601797 ]\n [ 1.5777946 -1.3876114 -1.0923109 ]]", "observation": "[[ 0.7354466 0.75884074 0.8808755 0.49407113 1.6275619 1.2808068\n -0.58329284 -0.48446172 0.72239536 0.18910517 -0.01208682 0.00231688\n -0.02037706 0.01590942 -0.02942709 0.0909901 0.01046085 -0.03155179\n -0.00744524]\n [ 0.15409921 1.0853562 -0.7322005 -1.8387384 0.8694199 -1.8354074\n 1.9908237 -0.85806745 -0.80394953 0.18910667 -0.01215033 0.00235519\n -0.02035128 0.01605678 -0.02973689 0.09111163 0.0121068 -0.0305748\n -0.00744558]\n [ 0.04543804 0.03307182 -0.86547625 -0.87217605 -1.1381856 -1.0550404\n 1.7462192 -0.734107 0.27253336 0.18909742 -0.01199552 0.00233739\n -0.02085722 0.01595189 -0.02982243 0.09103358 0.0126711 -0.03057472\n -0.00755486]\n [ 0.2519012 -0.00763436 0.50472593 -0.7787531 -1.5824283 0.5420323\n -0.57916665 0.162069 0.2867449 0.1890932 -0.01195508 0.00233742\n -0.02076421 0.01595191 -0.02973307 0.09111163 0.0121068 -0.0305748\n -0.00755463]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOKfwPe2U4boK16M82FrePRDjrTwK16M8gO2KPRzdmT0K16M8tfvPPYtkEr4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtPoMvhLPwT0K16M8UDvTPYylv719Tlk+m6z+vQKxxD1vvwE+L4sYvoUu570K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOKfwPe2U4boK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANha3j0Q4608CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACA7Yo9HN2ZPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtfvPPYtkEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.11750644 -0.00172105 0.02 ]\n [ 0.10857171 0.02122644 0.02 ]\n [ 0.06783581 0.07512876 0.02 ]\n [ 0.10155431 -0.14296167 0.02 ]]", "desired_goal": "[[-0.1376751 0.09463324 0.02 ]\n [ 0.10314047 -0.09357747 0.21221347]\n [-0.12435266 0.09604074 0.12670682]\n [-0.14896844 -0.1128817 0.02 ]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.17506444e-01\n -1.72105210e-03 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.08571708e-01\n 2.12264359e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 6.78358078e-02\n 7.51287639e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.01554312e-01\n -1.42961666e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C7B9eTq0MPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CHojbBXTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CHkdJaq0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7COMZDRdAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CKyRnvlVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CU8hTwUhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CU6eGwiadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CbqmTC+DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CY4a1kUcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CjJ1Ng0CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ci+kP+XJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CrO85CF9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CoZvP1L8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Cyh7zCk5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7CzN9x6v8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7C6H1zySWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7C3nEVFhHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DBvQ8fV7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DB5gG8mKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DIhcE/0NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DFg7DEWJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DPsMNMGpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DP+IMz/IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DWpIlMRIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DTaSX+l1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DdhdMTN/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ddy3XqZ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DkGUbDMvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C7DkVrdnCgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DhSncclxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DrXvUjLTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Dsz5j6N3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Dz4gaFVUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7DwvzSThYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D67EgntwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D6185S3tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EB5h8YygdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7D+rtE5QxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EIx28qWkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EI3/o7mudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EP3e7+UAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7ENER8MNMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EXRmTTvzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EXXvYvnKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EeDRx95RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EaxWcSXddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ek5jH4oJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7ElI6CDmKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EsDRhMJydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EoqLsKLLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Ey0bcXWOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7EzG3BpHqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7E508FINFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7E2SobXHzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FAe7HyVfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FBPDLr5ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FH4An2IwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FE+qioKldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FPEz9CNTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FPtxQzk7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C7FP/LgXMydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FWRnFo+OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FTM/2TPjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FdZSm65HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Fd4AwPAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FkuSGJvYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FhnnyNGWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Fr08FINFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Frw176YWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FyPkFOfvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7FvZSWJJodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F5jiCJ40dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F54AwPAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GAc4DLbIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7F9lFH8TBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GHuWBz3idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GIimuTzNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GO6J/G2kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GLY3zcyndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GVjHbRF7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GVoO+ZgHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GcJAUtZndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GZNnCfpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GjW1D0DmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GnD5j6N3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7GtWVRk3CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Gp2EkB0ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7Gz9PtUn5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G0KjesPrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G6yfcvdudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7G3RNRFZxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HBdf9gnddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HB+Q+2VndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HIuZTho/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HFjo2XLNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HPzAWSEEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HQ5qM3qBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HXu6I3zddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HUeAiFCcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C7HeqTKT0QdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVagIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVWM6XFVzZXJzXEFtbWFyXG1pbmljb25kYTNcZW52c1xybFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.9.18", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.2", "GPU Enabled": "True", "Numpy": "1.26.2", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.1"}}
|
replay.mp4
ADDED
Binary file (858 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -40.0, "std_reward": 20.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-27T21:03:48.302570"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a642740a01104c75f2a60efa1a1310d49d2695228eced6d4d37536072953f677
|
3 |
+
size 2953
|