AnAmbitiousMonk commited on
Commit
8a7f39c
·
1 Parent(s): f886d0a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.60 +/- 23.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc7c36bf0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc7c36bf160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc7c36bf1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc7c36bf280>", "_build": "<function ActorCriticPolicy._build at 0x7fc7c36bf310>", "forward": "<function ActorCriticPolicy.forward at 0x7fc7c36bf3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc7c36bf430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc7c36bf4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc7c36bf550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc7c36bf5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc7c36bf670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc7c36ba3f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673189413179351147, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE3AYD7cCLQ/RR3uPuvBor6GjYA+FNY5PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7GzIPzMBcUCUhpRSlIwBbJRNWQGMAXSUR0CaTC7voePrdX2UKGgGaAloD0MIBaipZSsgcECUhpRSlGgVTTMBaBZHQJpNecWj4591fZQoaAZoCWgPQwiwHCEDebZhQJSGlFKUaBVN6ANoFkdAmlQj2OAAhnV9lChoBmgJaA9DCA/Tvrm/5kNAlIaUUpRoFUvhaBZHQJpU9lum78N1fZQoaAZoCWgPQwgabsDnB5BxQJSGlFKUaBVNQgFoFkdAmlZgZjx0+3V9lChoBmgJaA9DCC1eLAxRRHFAlIaUUpRoFU1kAWgWR0CaWLtrKvFFdX2UKGgGaAloD0MIMWDJVay9cUCUhpRSlGgVTXcBaBZHQJpaauKXOW11fZQoaAZoCWgPQwgSvvc3KKdwQJSGlFKUaBVNYgFoFkdAmlw2y1NQCXV9lChoBmgJaA9DCFYqqKg6GnFAlIaUUpRoFU0xAWgWR0CaXjQ8OkLydX2UKGgGaAloD0MIi1OthVnMTUCUhpRSlGgVTQ8BaBZHQJpfRyvLX+V1fZQoaAZoCWgPQwhpc5zbxItwQJSGlFKUaBVNQwFoFkdAmmClaSs8xXV9lChoBmgJaA9DCLRby2S4h29AlIaUUpRoFU0qAWgWR0CaYte/Yao/dX2UKGgGaAloD0MIevzepj+ZbECUhpRSlGgVTUIBaBZHQJpkN+fAbhp1fZQoaAZoCWgPQwiPqFDdXNpDQJSGlFKUaBVL+WgWR0CaZTxiG34LdX2UKGgGaAloD0MI7u4Buq+Mb0CUhpRSlGgVTSMBaBZHQJpm6hUR3/x1fZQoaAZoCWgPQwjNI38w8DZTQJSGlFKUaBVL4GgWR0CaaTFnqVyFdX2UKGgGaAloD0MIDafMzbejcECUhpRSlGgVTQ0BaBZHQJprChJyyUt1fZQoaAZoCWgPQwh6UiY1tMFxQJSGlFKUaBVNaAFoFkdAmm2HCoCMgnV9lChoBmgJaA9DCNYfYRiwVHJAlIaUUpRoFU2oAWgWR0Cacl1BdD6WdX2UKGgGaAloD0MI8gpET0p/bkCUhpRSlGgVTTABaBZHQJp0KInBtUJ1fZQoaAZoCWgPQwhAUG7btyhxQJSGlFKUaBVNQgFoFkdAmnXqAFxGUnV9lChoBmgJaA9DCA5lqIqpJGBAlIaUUpRoFU3oA2gWR0CafSTMaCL/dX2UKGgGaAloD0MISih9IWRncECUhpRSlGgVTToBaBZHQJp/LZ26kIp1fZQoaAZoCWgPQwiXOsjrwT1SQJSGlFKUaBVL12gWR0Caf/oUi6g/dX2UKGgGaAloD0MI5iFTPgSjSkCUhpRSlGgVS+JoFkdAmoDLZOBUaXV9lChoBmgJaA9DCA9eu7ThhkVAlIaUUpRoFUuyaBZHQJqBby08eS11fZQoaAZoCWgPQwgT8GskCSBxQJSGlFKUaBVNEgFoFkdAmoJu8Gs3hnV9lChoBmgJaA9DCB0B3CxeBkNAlIaUUpRoFUvraBZHQJqELuCwr2B1fZQoaAZoCWgPQwgU7L/OzUdxQJSGlFKUaBVNAwFoFkdAmoUpUgjhUHV9lChoBmgJaA9DCFIpdjQO60tAlIaUUpRoFUvFaBZHQJqF4NUfgaZ1fZQoaAZoCWgPQwhtWb4ug/VwQJSGlFKUaBVNMwFoFkdAmocdwFTvRnV9lChoBmgJaA9DCNsV+mDZb3JAlIaUUpRoFU2DAWgWR0CaieCRfWtmdX2UKGgGaAloD0MIx0yiXrAjcUCUhpRSlGgVTT8BaBZHQJqLM2DQJHB1fZQoaAZoCWgPQwicUl4roTVNQJSGlFKUaBVLqmgWR0Cai9NyYG+sdX2UKGgGaAloD0MIwac5eRHQckCUhpRSlGgVS/RoFkdAmozLIcR15nV9lChoBmgJaA9DCOMan8n+p05AlIaUUpRoFUvXaBZHQJqOTvPTodN1fZQoaAZoCWgPQwixU6waxE5yQJSGlFKUaBVNSwFoFkdAmo+oBaLXMHV9lChoBmgJaA9DCOfCSC/qrW5AlIaUUpRoFU1fAWgWR0CakTaAWi1zdX2UKGgGaAloD0MI24toO6Y+RUCUhpRSlGgVS+xoFkdAmpModQwbl3V9lChoBmgJaA9DCFuwVBdwiW9AlIaUUpRoFU1lAWgWR0CalQZOzposdX2UKGgGaAloD0MIlwM91DYubkCUhpRSlGgVTQ0BaBZHQJqWHAsTWXl1fZQoaAZoCWgPQwjJWkOpvRpIQJSGlFKUaBVNAAFoFkdAmpcSqU/wAnV9lChoBmgJaA9DCN7jTBO26HBAlIaUUpRoFU2vAWgWR0Cama8lolD4dX2UKGgGaAloD0MIqz5XW3E/cECUhpRSlGgVTToBaBZHQJqa/wYtQKt1fZQoaAZoCWgPQwgctcL0vQJvQJSGlFKUaBVNGQFoFkdAmpw2Op84P3V9lChoBmgJaA9DCPZCAdtBsGtAlIaUUpRoFU02AWgWR0CankwrlNlAdX2UKGgGaAloD0MIKhprf2dmckCUhpRSlGgVS/xoFkdAmp8/1YhdMXV9lChoBmgJaA9DCFUzaymgN3BAlIaUUpRoFU1QAWgWR0CaoN4XoC+2dX2UKGgGaAloD0MIZaa0/paCcUCUhpRSlGgVTS4BaBZHQJqi7pC8e0Z1fZQoaAZoCWgPQwgCZVOusD5wQJSGlFKUaBVNUwFoFkdAmqSDEFW4mXV9lChoBmgJaA9DCM5PcRx43lBAlIaUUpRoFUvHaBZHQJqlM+kgwGp1fZQoaAZoCWgPQwiCyCJNPEpwQJSGlFKUaBVNMAFoFkdAmqaVzhgmZ3V9lChoBmgJaA9DCKosCrvoW3JAlIaUUpRoFU03AWgWR0CaqQvqC6H1dX2UKGgGaAloD0MISZwVUZMYYUCUhpRSlGgVTegDaBZHQJqxLUYsNDt1fZQoaAZoCWgPQwisH5vkh3dwQJSGlFKUaBVNSQFoFkdAmrJ6TW5H3HV9lChoBmgJaA9DCM7ixcJQz3BAlIaUUpRoFU0+AWgWR0Cas7qnFYMfdX2UKGgGaAloD0MId4GSAotycECUhpRSlGgVTfYBaBZHQJq3LUmUnoh1fZQoaAZoCWgPQwiAuRYtwFNtQJSGlFKUaBVNLgFoFkdAmriYsVclgXV9lChoBmgJaA9DCHF1AMSdHXFAlIaUUpRoFU0hAWgWR0Caudza9K28dX2UKGgGaAloD0MImFEstzRXakCUhpRSlGgVTX4BaBZHQJq8ca1kUbl1fZQoaAZoCWgPQwjTa7Ox0sVwQJSGlFKUaBVNNQFoFkdAmr3WzKLbYnV9lChoBmgJaA9DCCh+jLnrZHBAlIaUUpRoFU2tAWgWR0CawKuaF23bdX2UKGgGaAloD0MI6e3PRcPjYUCUhpRSlGgVTegDaBZHQJrG+XqqwQl1fZQoaAZoCWgPQwjwpfCgmVxwQJSGlFKUaBVNMgFoFkdAmslpuQ6p53V9lChoBmgJaA9DCAM+P4wQ93BAlIaUUpRoFU3cAWgWR0CazGBjWkJsdX2UKGgGaAloD0MIUb8LWzN/bkCUhpRSlGgVTe0BaBZHQJrQa43FUAF1fZQoaAZoCWgPQwhvoMA7+RNyQJSGlFKUaBVNPwFoFkdAmtHZwbVBlnV9lChoBmgJaA9DCKBQTx+BNU5AlIaUUpRoFUvgaBZHQJrSur92ovV1fZQoaAZoCWgPQwjfbkkOGKBxQJSGlFKUaBVNOgFoFkdAmtS611GLDXV9lChoBmgJaA9DCPXabKzEpk5AlIaUUpRoFUvmaBZHQJrVk5NoJzF1fZQoaAZoCWgPQwhhqpm1VCpwQJSGlFKUaBVNYwFoFkdAmtce/1xsEnV9lChoBmgJaA9DCITwaOOI5U9AlIaUUpRoFU0GAWgWR0Ca2CDOC5EudX2UKGgGaAloD0MIlba4xqcFc0CUhpRSlGgVTQwBaBZHQJraMcn3L3d1fZQoaAZoCWgPQwjn+6nxEjtyQJSGlFKUaBVNeQFoFkdAmtvyKWLP2XV9lChoBmgJaA9DCH9ne/RGAnJAlIaUUpRoFU0fAWgWR0Ca3THc1wYMdX2UKGgGaAloD0MIaXBbW3i7cUCUhpRSlGgVTe8BaBZHQJrg8vduYQd1fZQoaAZoCWgPQwhuwOeHUXxxQJSGlFKUaBVNkwFoFkdAmuKwlSjxkXV9lChoBmgJaA9DCB3HD5XGvWxAlIaUUpRoFU1SAWgWR0Ca5Njlgc94dX2UKGgGaAloD0MIbjMV4hGjZkCUhpRSlGgVTegDaBZHQJrqACDEm6Z1fZQoaAZoCWgPQwh7SzlfrDhyQJSGlFKUaBVNSQFoFkdAmuwdovi97HV9lChoBmgJaA9DCOvGuyNjgUdAlIaUUpRoFU0mAWgWR0Ca7UlWwNb1dX2UKGgGaAloD0MIW+832nGLbECUhpRSlGgVTS0BaBZHQJruto11nul1fZQoaAZoCWgPQwgB323eOGNwQJSGlFKUaBVNEQFoFkdAmvDqlYU343V9lChoBmgJaA9DCARUOIJU4HBAlIaUUpRoFU1EAWgWR0Ca8m9KEnLJdX2UKGgGaAloD0MIeHx716A1RkCUhpRSlGgVS/JoFkdAmvOM/+sHSnV9lChoBmgJaA9DCFGGqphKx0dAlIaUUpRoFUv+aBZHQJr0rkFOful1fZQoaAZoCWgPQwiJl6dzBcRxQJSGlFKUaBVNJQFoFkdAmvbCSFGoaXV9lChoBmgJaA9DCB2QhH07nHBAlIaUUpRoFU16AWgWR0Ca+Jg2qDK6dX2UKGgGaAloD0MIs+pztZUwckCUhpRSlGgVTXoBaBZHQJr6MsFt8/l1fZQoaAZoCWgPQwi3fvrPmmxwQJSGlFKUaBVNMAFoFkdAmvxK8pTdcnV9lChoBmgJaA9DCBR6/Un8FG9AlIaUUpRoFU1oAWgWR0Ca/gyrgflqdX2UKGgGaAloD0MIqcKf4c2xcUCUhpRSlGgVTSwBaBZHQJr/KvLX+VF1fZQoaAZoCWgPQwjXw5eJ4tRyQJSGlFKUaBVNEwFoFkdAmwD2kFfReHV9lChoBmgJaA9DCP5itmTVl29AlIaUUpRoFU1HAWgWR0CbAmP5pJwsdX2UKGgGaAloD0MIX+/+eO/kcECUhpRSlGgVTUsBaBZHQJsDym8/Uvx1fZQoaAZoCWgPQwibdjHN9ORvQJSGlFKUaBVNYwFoFkdAmwY2njyWiXV9lChoBmgJaA9DCOyjU1e+d25AlIaUUpRoFU1ZAWgWR0CbB6+qR2bHdX2UKGgGaAloD0MIgVt38xQ1ckCUhpRSlGgVTRwBaBZHQJsI15hScb11fZQoaAZoCWgPQwhm2Cjr9yxwQJSGlFKUaBVNegFoFkdAmwtnkT6BRXV9lChoBmgJaA9DCEm+EkgJwm1AlIaUUpRoFU0nA2gWR0CbD1REnb7CdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0faab12ca26e80e93251e0e8bf9ef4c813093c57afd79ba5acd7eae2f30a7130
3
+ size 146025
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc7c36bf0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc7c36bf160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc7c36bf1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc7c36bf280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc7c36bf310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc7c36bf3a0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc7c36bf430>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc7c36bf4c0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc7c36bf550>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc7c36bf5e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc7c36bf670>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc7c36ba3f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1000448,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673189413179351147,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE3AYD7cCLQ/RR3uPuvBor6GjYA+FNY5PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00044800000000000395,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7GzIPzMBcUCUhpRSlIwBbJRNWQGMAXSUR0CaTC7voePrdX2UKGgGaAloD0MIBaipZSsgcECUhpRSlGgVTTMBaBZHQJpNecWj4591fZQoaAZoCWgPQwiwHCEDebZhQJSGlFKUaBVN6ANoFkdAmlQj2OAAhnV9lChoBmgJaA9DCA/Tvrm/5kNAlIaUUpRoFUvhaBZHQJpU9lum78N1fZQoaAZoCWgPQwgabsDnB5BxQJSGlFKUaBVNQgFoFkdAmlZgZjx0+3V9lChoBmgJaA9DCC1eLAxRRHFAlIaUUpRoFU1kAWgWR0CaWLtrKvFFdX2UKGgGaAloD0MIMWDJVay9cUCUhpRSlGgVTXcBaBZHQJpaauKXOW11fZQoaAZoCWgPQwgSvvc3KKdwQJSGlFKUaBVNYgFoFkdAmlw2y1NQCXV9lChoBmgJaA9DCFYqqKg6GnFAlIaUUpRoFU0xAWgWR0CaXjQ8OkLydX2UKGgGaAloD0MIi1OthVnMTUCUhpRSlGgVTQ8BaBZHQJpfRyvLX+V1fZQoaAZoCWgPQwhpc5zbxItwQJSGlFKUaBVNQwFoFkdAmmClaSs8xXV9lChoBmgJaA9DCLRby2S4h29AlIaUUpRoFU0qAWgWR0CaYte/Yao/dX2UKGgGaAloD0MIevzepj+ZbECUhpRSlGgVTUIBaBZHQJpkN+fAbhp1fZQoaAZoCWgPQwiPqFDdXNpDQJSGlFKUaBVL+WgWR0CaZTxiG34LdX2UKGgGaAloD0MI7u4Buq+Mb0CUhpRSlGgVTSMBaBZHQJpm6hUR3/x1fZQoaAZoCWgPQwjNI38w8DZTQJSGlFKUaBVL4GgWR0CaaTFnqVyFdX2UKGgGaAloD0MIDafMzbejcECUhpRSlGgVTQ0BaBZHQJprChJyyUt1fZQoaAZoCWgPQwh6UiY1tMFxQJSGlFKUaBVNaAFoFkdAmm2HCoCMgnV9lChoBmgJaA9DCNYfYRiwVHJAlIaUUpRoFU2oAWgWR0Cacl1BdD6WdX2UKGgGaAloD0MI8gpET0p/bkCUhpRSlGgVTTABaBZHQJp0KInBtUJ1fZQoaAZoCWgPQwhAUG7btyhxQJSGlFKUaBVNQgFoFkdAmnXqAFxGUnV9lChoBmgJaA9DCA5lqIqpJGBAlIaUUpRoFU3oA2gWR0CafSTMaCL/dX2UKGgGaAloD0MISih9IWRncECUhpRSlGgVTToBaBZHQJp/LZ26kIp1fZQoaAZoCWgPQwiXOsjrwT1SQJSGlFKUaBVL12gWR0Caf/oUi6g/dX2UKGgGaAloD0MI5iFTPgSjSkCUhpRSlGgVS+JoFkdAmoDLZOBUaXV9lChoBmgJaA9DCA9eu7ThhkVAlIaUUpRoFUuyaBZHQJqBby08eS11fZQoaAZoCWgPQwgT8GskCSBxQJSGlFKUaBVNEgFoFkdAmoJu8Gs3hnV9lChoBmgJaA9DCB0B3CxeBkNAlIaUUpRoFUvraBZHQJqELuCwr2B1fZQoaAZoCWgPQwgU7L/OzUdxQJSGlFKUaBVNAwFoFkdAmoUpUgjhUHV9lChoBmgJaA9DCFIpdjQO60tAlIaUUpRoFUvFaBZHQJqF4NUfgaZ1fZQoaAZoCWgPQwhtWb4ug/VwQJSGlFKUaBVNMwFoFkdAmocdwFTvRnV9lChoBmgJaA9DCNsV+mDZb3JAlIaUUpRoFU2DAWgWR0CaieCRfWtmdX2UKGgGaAloD0MIx0yiXrAjcUCUhpRSlGgVTT8BaBZHQJqLM2DQJHB1fZQoaAZoCWgPQwicUl4roTVNQJSGlFKUaBVLqmgWR0Cai9NyYG+sdX2UKGgGaAloD0MIwac5eRHQckCUhpRSlGgVS/RoFkdAmozLIcR15nV9lChoBmgJaA9DCOMan8n+p05AlIaUUpRoFUvXaBZHQJqOTvPTodN1fZQoaAZoCWgPQwixU6waxE5yQJSGlFKUaBVNSwFoFkdAmo+oBaLXMHV9lChoBmgJaA9DCOfCSC/qrW5AlIaUUpRoFU1fAWgWR0CakTaAWi1zdX2UKGgGaAloD0MI24toO6Y+RUCUhpRSlGgVS+xoFkdAmpModQwbl3V9lChoBmgJaA9DCFuwVBdwiW9AlIaUUpRoFU1lAWgWR0CalQZOzposdX2UKGgGaAloD0MIlwM91DYubkCUhpRSlGgVTQ0BaBZHQJqWHAsTWXl1fZQoaAZoCWgPQwjJWkOpvRpIQJSGlFKUaBVNAAFoFkdAmpcSqU/wAnV9lChoBmgJaA9DCN7jTBO26HBAlIaUUpRoFU2vAWgWR0Cama8lolD4dX2UKGgGaAloD0MIqz5XW3E/cECUhpRSlGgVTToBaBZHQJqa/wYtQKt1fZQoaAZoCWgPQwgctcL0vQJvQJSGlFKUaBVNGQFoFkdAmpw2Op84P3V9lChoBmgJaA9DCPZCAdtBsGtAlIaUUpRoFU02AWgWR0CankwrlNlAdX2UKGgGaAloD0MIKhprf2dmckCUhpRSlGgVS/xoFkdAmp8/1YhdMXV9lChoBmgJaA9DCFUzaymgN3BAlIaUUpRoFU1QAWgWR0CaoN4XoC+2dX2UKGgGaAloD0MIZaa0/paCcUCUhpRSlGgVTS4BaBZHQJqi7pC8e0Z1fZQoaAZoCWgPQwgCZVOusD5wQJSGlFKUaBVNUwFoFkdAmqSDEFW4mXV9lChoBmgJaA9DCM5PcRx43lBAlIaUUpRoFUvHaBZHQJqlM+kgwGp1fZQoaAZoCWgPQwiCyCJNPEpwQJSGlFKUaBVNMAFoFkdAmqaVzhgmZ3V9lChoBmgJaA9DCKosCrvoW3JAlIaUUpRoFU03AWgWR0CaqQvqC6H1dX2UKGgGaAloD0MISZwVUZMYYUCUhpRSlGgVTegDaBZHQJqxLUYsNDt1fZQoaAZoCWgPQwisH5vkh3dwQJSGlFKUaBVNSQFoFkdAmrJ6TW5H3HV9lChoBmgJaA9DCM7ixcJQz3BAlIaUUpRoFU0+AWgWR0Cas7qnFYMfdX2UKGgGaAloD0MId4GSAotycECUhpRSlGgVTfYBaBZHQJq3LUmUnoh1fZQoaAZoCWgPQwiAuRYtwFNtQJSGlFKUaBVNLgFoFkdAmriYsVclgXV9lChoBmgJaA9DCHF1AMSdHXFAlIaUUpRoFU0hAWgWR0Caudza9K28dX2UKGgGaAloD0MImFEstzRXakCUhpRSlGgVTX4BaBZHQJq8ca1kUbl1fZQoaAZoCWgPQwjTa7Ox0sVwQJSGlFKUaBVNNQFoFkdAmr3WzKLbYnV9lChoBmgJaA9DCCh+jLnrZHBAlIaUUpRoFU2tAWgWR0CawKuaF23bdX2UKGgGaAloD0MI6e3PRcPjYUCUhpRSlGgVTegDaBZHQJrG+XqqwQl1fZQoaAZoCWgPQwjwpfCgmVxwQJSGlFKUaBVNMgFoFkdAmslpuQ6p53V9lChoBmgJaA9DCAM+P4wQ93BAlIaUUpRoFU3cAWgWR0CazGBjWkJsdX2UKGgGaAloD0MIUb8LWzN/bkCUhpRSlGgVTe0BaBZHQJrQa43FUAF1fZQoaAZoCWgPQwhvoMA7+RNyQJSGlFKUaBVNPwFoFkdAmtHZwbVBlnV9lChoBmgJaA9DCKBQTx+BNU5AlIaUUpRoFUvgaBZHQJrSur92ovV1fZQoaAZoCWgPQwjfbkkOGKBxQJSGlFKUaBVNOgFoFkdAmtS611GLDXV9lChoBmgJaA9DCPXabKzEpk5AlIaUUpRoFUvmaBZHQJrVk5NoJzF1fZQoaAZoCWgPQwhhqpm1VCpwQJSGlFKUaBVNYwFoFkdAmtce/1xsEnV9lChoBmgJaA9DCITwaOOI5U9AlIaUUpRoFU0GAWgWR0Ca2CDOC5EudX2UKGgGaAloD0MIlba4xqcFc0CUhpRSlGgVTQwBaBZHQJraMcn3L3d1fZQoaAZoCWgPQwjn+6nxEjtyQJSGlFKUaBVNeQFoFkdAmtvyKWLP2XV9lChoBmgJaA9DCH9ne/RGAnJAlIaUUpRoFU0fAWgWR0Ca3THc1wYMdX2UKGgGaAloD0MIaXBbW3i7cUCUhpRSlGgVTe8BaBZHQJrg8vduYQd1fZQoaAZoCWgPQwhuwOeHUXxxQJSGlFKUaBVNkwFoFkdAmuKwlSjxkXV9lChoBmgJaA9DCB3HD5XGvWxAlIaUUpRoFU1SAWgWR0Ca5Njlgc94dX2UKGgGaAloD0MIbjMV4hGjZkCUhpRSlGgVTegDaBZHQJrqACDEm6Z1fZQoaAZoCWgPQwh7SzlfrDhyQJSGlFKUaBVNSQFoFkdAmuwdovi97HV9lChoBmgJaA9DCOvGuyNjgUdAlIaUUpRoFU0mAWgWR0Ca7UlWwNb1dX2UKGgGaAloD0MIW+832nGLbECUhpRSlGgVTS0BaBZHQJruto11nul1fZQoaAZoCWgPQwgB323eOGNwQJSGlFKUaBVNEQFoFkdAmvDqlYU343V9lChoBmgJaA9DCARUOIJU4HBAlIaUUpRoFU1EAWgWR0Ca8m9KEnLJdX2UKGgGaAloD0MIeHx716A1RkCUhpRSlGgVS/JoFkdAmvOM/+sHSnV9lChoBmgJaA9DCFGGqphKx0dAlIaUUpRoFUv+aBZHQJr0rkFOful1fZQoaAZoCWgPQwiJl6dzBcRxQJSGlFKUaBVNJQFoFkdAmvbCSFGoaXV9lChoBmgJaA9DCB2QhH07nHBAlIaUUpRoFU16AWgWR0Ca+Jg2qDK6dX2UKGgGaAloD0MIs+pztZUwckCUhpRSlGgVTXoBaBZHQJr6MsFt8/l1fZQoaAZoCWgPQwi3fvrPmmxwQJSGlFKUaBVNMAFoFkdAmvxK8pTdcnV9lChoBmgJaA9DCBR6/Un8FG9AlIaUUpRoFU1oAWgWR0Ca/gyrgflqdX2UKGgGaAloD0MIqcKf4c2xcUCUhpRSlGgVTSwBaBZHQJr/KvLX+VF1fZQoaAZoCWgPQwjXw5eJ4tRyQJSGlFKUaBVNEwFoFkdAmwD2kFfReHV9lChoBmgJaA9DCP5itmTVl29AlIaUUpRoFU1HAWgWR0CbAmP5pJwsdX2UKGgGaAloD0MIX+/+eO/kcECUhpRSlGgVTUsBaBZHQJsDym8/Uvx1fZQoaAZoCWgPQwibdjHN9ORvQJSGlFKUaBVNYwFoFkdAmwY2njyWiXV9lChoBmgJaA9DCOyjU1e+d25AlIaUUpRoFU1ZAWgWR0CbB6+qR2bHdX2UKGgGaAloD0MIgVt38xQ1ckCUhpRSlGgVTRwBaBZHQJsI15hScb11fZQoaAZoCWgPQwhm2Cjr9yxwQJSGlFKUaBVNegFoFkdAmwtnkT6BRXV9lChoBmgJaA9DCEm+EkgJwm1AlIaUUpRoFU0nA2gWR0CbD1REnb7CdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 3908,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1843f2a2626d0da17074ff4cea497c1d4981a9526293a0e4181a038f087b100a
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc2129dbaa7229b89afbf8e3a4eafec44b8044752aaea2fb6632a41f26fb1d0c
3
+ size 43073
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (197 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.60067824977534, "std_reward": 23.9553232473889, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T15:20:42.670374"}