Commit
·
68ccd4e
1
Parent(s):
7ccc257
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v7.zip +3 -0
- ppo-LunarLander-v7/_stable_baselines3_version +1 -0
- ppo-LunarLander-v7/data +95 -0
- ppo-LunarLander-v7/policy.optimizer.pth +3 -0
- ppo-LunarLander-v7/policy.pth +3 -0
- ppo-LunarLander-v7/pytorch_variables.pth +3 -0
- ppo-LunarLander-v7/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 285.92 +/- 15.92
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff2ce0c280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff2ce0c310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff2ce0c3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff2ce0c430>", "_build": "<function ActorCriticPolicy._build at 0x7eff2ce0c4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7eff2ce0c550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff2ce0c5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff2ce0c670>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff2ce0c700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff2ce0c790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff2ce0c820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff2ce0c8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff2ce0f060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676655689458681279, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABOcAD5aBbA/mjGePg4mFb+P+nk+sPtNPQAAAAAAAAAADZOyPThJ7D4jtXK+eXDVvmAcnDyG5OC9AAAAAAAAAACzmj29wylmuiI5hLl6+Ae0xCtMOhHrmDgAAIA/AACAPzOI6rx2Y7o/gg60vnwUIj6IHJo8PgtKPAAAAAAAAAAAzfWSvPbEWbr2as80b4ftrmOCl7u+wfizAACAPwAAgD8A+Ee7bTI5P3VMbT3xivq+wyxlPObHMz0AAAAAAAAAAKaBrL01iLk+naKcPq4E6L7uwQI+idyLPQAAAAAAAAAAM8MtPG4spD3fgoK+VBCkvt+CV76R08Q6AAAAAAAAAAC6sMk+69xdP1LZNz5fRz2/HCgSP9qU+LwAAAAAAAAAAM258rwIBws/ofqLPezE0b6S+Gc8W2yfPQAAAAAAAAAAZpujvOlkYbz2yuS9FZoxvdU+WT2zmRU9AACAPwAAgD9m8l+97G4QP3blpD3QNsS+Etmevche/T0AAAAAAAAAAFOFQD703rk+FCCHvVrr5L60FiQ++PqfvQAAAAAAAAAAzbhVveHqk7rtgFEzH1Rxr5I58Tr/EMuzAACAPwAAgD8zUIA9YgywP+Y/3z4V/I++3ydsPWs+gj4AAAAAAAAAADMDxjpIkZ665lV4t7NHTLLqbfW6TmmPNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9fQR+MOXc0CUhpRSlIwBbJRL3IwBdJRHQLXwy8M/hVF1fZQoaAZoCWgPQwgLQ+T0NdFwQJSGlFKUaBVL12gWR0C18PM3++/QdX2UKGgGaAloD0MIV5OnrGb3cECUhpRSlGgVS89oFkdAtfETot+TeXV9lChoBmgJaA9DCKJ6a2CrkXNAlIaUUpRoFUvjaBZHQLXxFUBXCCV1fZQoaAZoCWgPQwjH2XQEMCtwQJSGlFKUaBVL2mgWR0C18SJxBE8adX2UKGgGaAloD0MIlMK8x5mccECUhpRSlGgVS9doFkdAtfE5wZOzp3V9lChoBmgJaA9DCAOV8e8z121AlIaUUpRoFUv1aBZHQLXxZL5hz/91fZQoaAZoCWgPQwg7Hch6qo5xQJSGlFKUaBVL0mgWR0C18W9RBNVSdX2UKGgGaAloD0MI2ClWDYKNckCUhpRSlGgVS8ZoFkdAtfF08ox59nV9lChoBmgJaA9DCMbctYR8lHNAlIaUUpRoFUvlaBZHQLXxm+jua4N1fZQoaAZoCWgPQwjf+Nozy2dxQJSGlFKUaBVL6WgWR0C18bAg1WKedX2UKGgGaAloD0MIC2E1lrBXcUCUhpRSlGgVS8VoFkdAtfG+94/u9nV9lChoBmgJaA9DCD86deVzyHJAlIaUUpRoFUv1aBZHQLXxw9E1EVp1fZQoaAZoCWgPQwh3TrNA+1BxQJSGlFKUaBVL+GgWR0C18c3oLXtjdX2UKGgGaAloD0MIYY2z6ciQckCUhpRSlGgVS9toFkdAtfHweZG8VnV9lChoBmgJaA9DCJLn+j7ctnJAlIaUUpRoFUvMaBZHQLXx9ckMTex1fZQoaAZoCWgPQwgCoIobt2lxQJSGlFKUaBVL1WgWR0C18fgCr92pdX2UKGgGaAloD0MI0Jfe/pxCc0CUhpRSlGgVS91oFkdAtfIp6gM+eXV9lChoBmgJaA9DCBYzwtuDT3FAlIaUUpRoFUvOaBZHQLXyLlXiiqR1fZQoaAZoCWgPQwhRa5p3nCpvQJSGlFKUaBVL12gWR0C18jhTOxB3dX2UKGgGaAloD0MI3e9QFOg1cUCUhpRSlGgVS8JoFkdAtfJ4d+5OJ3V9lChoBmgJaA9DCMxG5/zUBXNAlIaUUpRoFUvLaBZHQLXye5Jsfq51fZQoaAZoCWgPQwibO/pfLi5yQJSGlFKUaBVNAwFoFkdAtfKEH4XXRXV9lChoBmgJaA9DCG1YU1nUo3JAlIaUUpRoFUvPaBZHQLXyjsu3+dd1fZQoaAZoCWgPQwiGAUuuorlyQJSGlFKUaBVL52gWR0C18t4GD+R6dX2UKGgGaAloD0MIUb01sNVmcUCUhpRSlGgVS8VoFkdAtfLfkxREW3V9lChoBmgJaA9DCGrbMArCUHFAlIaUUpRoFUvcaBZHQLXy4w3o9s91fZQoaAZoCWgPQwht5pDUwgtyQJSGlFKUaBVL2mgWR0C18vHuE25ydX2UKGgGaAloD0MIwsO0b66OckCUhpRSlGgVS+loFkdAtfMBY8uBc3V9lChoBmgJaA9DCAu2EU/2QHFAlIaUUpRoFUvBaBZHQLXzAYQrc0t1fZQoaAZoCWgPQwjL2NDNPgNyQJSGlFKUaBVLxGgWR0C18wy5VfeDdX2UKGgGaAloD0MI3q6XpohGckCUhpRSlGgVS+ZoFkdAtfM4n3L3bnV9lChoBmgJaA9DCPAyw0aZ73FAlIaUUpRoFUvXaBZHQLXzV36AOKB1fZQoaAZoCWgPQwhK628JgEVxQJSGlFKUaBVL4WgWR0C182ovi97GdX2UKGgGaAloD0MIvM6G/PMwcECUhpRSlGgVS8VoFkdAtfOOoegctHV9lChoBmgJaA9DCE1lUdiFKXJAlIaUUpRoFUvhaBZHQLXz1nscABF1fZQoaAZoCWgPQwih9fBl4tVxQJSGlFKUaBVL72gWR0C18+AOJ+DwdX2UKGgGaAloD0MIhzWVRWFfcUCUhpRSlGgVS9JoFkdAtfQWi8FpwnV9lChoBmgJaA9DCG03wTeNJXNAlIaUUpRoFUvCaBZHQLX0JiMYMv11fZQoaAZoCWgPQwgDP6phfydwQJSGlFKUaBVL52gWR0C19FZHmRvFdX2UKGgGaAloD0MI2A+xwQIEc0CUhpRSlGgVS9VoFkdAtfRZ1X/5tXV9lChoBmgJaA9DCGEzwAVZbXNAlIaUUpRoFUvFaBZHQLX0eYMvysl1fZQoaAZoCWgPQwi3t1uSQ5dwQJSGlFKUaBVL8mgWR0C19IDS5RTCdX2UKGgGaAloD0MIXTY652f0cECUhpRSlGgVS8FoFkdAtfSYnRb8nHV9lChoBmgJaA9DCCZxVkTN1G5AlIaUUpRoFUvdaBZHQLX0309hZyN1fZQoaAZoCWgPQwigTnl0I75yQJSGlFKUaBVLzmgWR0C19Ua0dBBzdX2UKGgGaAloD0MIRkQxeUOUckCUhpRSlGgVTZUBaBZHQLX1hM7lq8F1fZQoaAZoCWgPQwjkFYielJJwQJSGlFKUaBVL62gWR0C19Y0PlMh6dX2UKGgGaAloD0MIMLsnD0ssc0CUhpRSlGgVTSABaBZHQLX1kiqyWzF1fZQoaAZoCWgPQwj0TZoGha1yQJSGlFKUaBVLvGgWR0C19bYbGWD6dX2UKGgGaAloD0MIAOZatACScECUhpRSlGgVS/ZoFkdAtfXfhLoOhHV9lChoBmgJaA9DCAxZ3ep53HJAlIaUUpRoFUvtaBZHQLX13yf+S8t1fZQoaAZoCWgPQwhFSrN5XDpzQJSGlFKUaBVL12gWR0C19eTrNW2gdX2UKGgGaAloD0MIDMnJxK0VVsCUhpRSlGgVTQsDaBZHQLX2AjSG8Ep1fZQoaAZoCWgPQwgwSPq0impxQJSGlFKUaBVLyGgWR0C19grAYYR/dX2UKGgGaAloD0MILubnhmZ6cUCUhpRSlGgVS95oFkdAtfYXYcvM83V9lChoBmgJaA9DCEN0CByJnHJAlIaUUpRoFU0LAWgWR0C19lYtDlYEdX2UKGgGaAloD0MI0t9L4cH4cUCUhpRSlGgVTRgCaBZHQLX2YNmDlHV1fZQoaAZoCWgPQwgmcyzvqsZvQJSGlFKUaBVL8GgWR0C19omseXAudX2UKGgGaAloD0MISWO0jirQcUCUhpRSlGgVS89oFkdAtfasBV+7UXV9lChoBmgJaA9DCIv8+iG2o29AlIaUUpRoFUvfaBZHQLX3ApfQa751fZQoaAZoCWgPQwhU4GQbOCVzQJSGlFKUaBVLyWgWR0C19wP2PDHfdX2UKGgGaAloD0MI9BWkGUt3c0CUhpRSlGgVS+loFkdAtfcM3Kji43V9lChoBmgJaA9DCJZa7zdawnFAlIaUUpRoFUvCaBZHQLX3HGPgeil1fZQoaAZoCWgPQwhDGhU42fRxQJSGlFKUaBVL72gWR0C19yF94NZvdX2UKGgGaAloD0MISKRt/IlZcUCUhpRSlGgVS85oFkdAtfcvm7rcCnV9lChoBmgJaA9DCMVwdQCEKnFAlIaUUpRoFUu9aBZHQLX3M1NQCS11fZQoaAZoCWgPQwgG2bJ8XVlyQJSGlFKUaBVL3mgWR0C190uL74zrdX2UKGgGaAloD0MIy/j3GZehcECUhpRSlGgVS95oFkdAtfdqWAwwkHV9lChoBmgJaA9DCCAIkKFju3BAlIaUUpRoFUvfaBZHQLX3d4Wk8A91fZQoaAZoCWgPQwgniLoPgEpyQJSGlFKUaBVLymgWR0C1950ngHeKdX2UKGgGaAloD0MI26M33Ad8ckCUhpRSlGgVS9loFkdAtfeq7xusLnV9lChoBmgJaA9DCAOYMnDA+HBAlIaUUpRoFUviaBZHQLX36tY0VJt1fZQoaAZoCWgPQwiCkZc1sftvQJSGlFKUaBVL2GgWR0C19/4sVclgdX2UKGgGaAloD0MIx7lNuJcrcUCUhpRSlGgVTX0DaBZHQLX4Jb0e2eB1fZQoaAZoCWgPQwgn+KbpM/dvQJSGlFKUaBVL12gWR0C1+FA0TDfndX2UKGgGaAloD0MIX3mQnmJNc0CUhpRSlGgVS8VoFkdAtfhl6w+t83V9lChoBmgJaA9DCHam0HkNInJAlIaUUpRoFUvbaBZHQLX4cYmb9ZR1fZQoaAZoCWgPQwhPyTmxR21wQJSGlFKUaBVL52gWR0C1+HYIF/x2dX2UKGgGaAloD0MIm3RbIpdscECUhpRSlGgVS+xoFkdAtfh10xM363V9lChoBmgJaA9DCMy3Pqx3BXFAlIaUUpRoFUviaBZHQLX4gPC2tuF1fZQoaAZoCWgPQwiHxahrbQNlQJSGlFKUaBVN6ANoFkdAtfiHrkbPyHV9lChoBmgJaA9DCFis4SL3LnNAlIaUUpRoFUviaBZHQLX4pIZIg/11fZQoaAZoCWgPQwjkZyPXjddwQJSGlFKUaBVLzmgWR0C1+LLKzRhMdX2UKGgGaAloD0MIl3X/WAgYckCUhpRSlGgVTQQBaBZHQLX4uOdGy5Z1fZQoaAZoCWgPQwjsvmN4LAVzQJSGlFKUaBVL5WgWR0C1+MQydnTRdX2UKGgGaAloD0MItFcfD71BckCUhpRSlGgVS8xoFkdAtfjaWgOBlXV9lChoBmgJaA9DCMoV3uXivHBAlIaUUpRoFUvdaBZHQLX448uzyBl1fZQoaAZoCWgPQwgLfbCMja9wQJSGlFKUaBVL2WgWR0C1+RuxnnMddX2UKGgGaAloD0MIRtJu9PFfc0CUhpRSlGgVS9poFkdAtfktNBWxQnV9lChoBmgJaA9DCNB9ObMdhXFAlIaUUpRoFUvWaBZHQLX5SMGHHm11fZQoaAZoCWgPQwjrcd9q3TdzQJSGlFKUaBVLyWgWR0C1+XgvDgqFdX2UKGgGaAloD0MIkNsvn+y+cUCUhpRSlGgVS8JoFkdAtfmABp5/snV9lChoBmgJaA9DCPzG154Zi3BAlIaUUpRoFUvPaBZHQLX5i/Glyip1fZQoaAZoCWgPQwjqP2t+fCBxQJSGlFKUaBVL3mgWR0C1+ZLhegL7dX2UKGgGaAloD0MIkZ23sVkVckCUhpRSlGgVS+toFkdAtfmciu+yq3V9lChoBmgJaA9DCBx5ILKIUnBAlIaUUpRoFUvqaBZHQLX5p5ZbILh1fZQoaAZoCWgPQwiXqUnwhmdxQJSGlFKUaBVNEwFoFkdAtfnBIiC8OHV9lChoBmgJaA9DCIOHad/cWXJAlIaUUpRoFUvraBZHQLX55fRNRFZ1fZQoaAZoCWgPQwhvLZPh+AZvQJSGlFKUaBVL7GgWR0C1+e4JeE7GdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v7.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0bf89dd9cbb6e0fe94754148c810bfb7179208ef3fed2149b17550e3de940db
|
3 |
+
size 147304
|
ppo-LunarLander-v7/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v7/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eff2ce0c280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff2ce0c310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff2ce0c3a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff2ce0c430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eff2ce0c4c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eff2ce0c550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff2ce0c5e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff2ce0c670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eff2ce0c700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff2ce0c790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff2ce0c820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff2ce0c8b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7eff2ce0f060>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 2031616,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676655689458681279,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABOcAD5aBbA/mjGePg4mFb+P+nk+sPtNPQAAAAAAAAAADZOyPThJ7D4jtXK+eXDVvmAcnDyG5OC9AAAAAAAAAACzmj29wylmuiI5hLl6+Ae0xCtMOhHrmDgAAIA/AACAPzOI6rx2Y7o/gg60vnwUIj6IHJo8PgtKPAAAAAAAAAAAzfWSvPbEWbr2as80b4ftrmOCl7u+wfizAACAPwAAgD8A+Ee7bTI5P3VMbT3xivq+wyxlPObHMz0AAAAAAAAAAKaBrL01iLk+naKcPq4E6L7uwQI+idyLPQAAAAAAAAAAM8MtPG4spD3fgoK+VBCkvt+CV76R08Q6AAAAAAAAAAC6sMk+69xdP1LZNz5fRz2/HCgSP9qU+LwAAAAAAAAAAM258rwIBws/ofqLPezE0b6S+Gc8W2yfPQAAAAAAAAAAZpujvOlkYbz2yuS9FZoxvdU+WT2zmRU9AACAPwAAgD9m8l+97G4QP3blpD3QNsS+Etmevche/T0AAAAAAAAAAFOFQD703rk+FCCHvVrr5L60FiQ++PqfvQAAAAAAAAAAzbhVveHqk7rtgFEzH1Rxr5I58Tr/EMuzAACAPwAAgD8zUIA9YgywP+Y/3z4V/I++3ydsPWs+gj4AAAAAAAAAADMDxjpIkZ665lV4t7NHTLLqbfW6TmmPNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9fQR+MOXc0CUhpRSlIwBbJRL3IwBdJRHQLXwy8M/hVF1fZQoaAZoCWgPQwgLQ+T0NdFwQJSGlFKUaBVL12gWR0C18PM3++/QdX2UKGgGaAloD0MIV5OnrGb3cECUhpRSlGgVS89oFkdAtfETot+TeXV9lChoBmgJaA9DCKJ6a2CrkXNAlIaUUpRoFUvjaBZHQLXxFUBXCCV1fZQoaAZoCWgPQwjH2XQEMCtwQJSGlFKUaBVL2mgWR0C18SJxBE8adX2UKGgGaAloD0MIlMK8x5mccECUhpRSlGgVS9doFkdAtfE5wZOzp3V9lChoBmgJaA9DCAOV8e8z121AlIaUUpRoFUv1aBZHQLXxZL5hz/91fZQoaAZoCWgPQwg7Hch6qo5xQJSGlFKUaBVL0mgWR0C18W9RBNVSdX2UKGgGaAloD0MI2ClWDYKNckCUhpRSlGgVS8ZoFkdAtfF08ox59nV9lChoBmgJaA9DCMbctYR8lHNAlIaUUpRoFUvlaBZHQLXxm+jua4N1fZQoaAZoCWgPQwjf+Nozy2dxQJSGlFKUaBVL6WgWR0C18bAg1WKedX2UKGgGaAloD0MIC2E1lrBXcUCUhpRSlGgVS8VoFkdAtfG+94/u9nV9lChoBmgJaA9DCD86deVzyHJAlIaUUpRoFUv1aBZHQLXxw9E1EVp1fZQoaAZoCWgPQwh3TrNA+1BxQJSGlFKUaBVL+GgWR0C18c3oLXtjdX2UKGgGaAloD0MIYY2z6ciQckCUhpRSlGgVS9toFkdAtfHweZG8VnV9lChoBmgJaA9DCJLn+j7ctnJAlIaUUpRoFUvMaBZHQLXx9ckMTex1fZQoaAZoCWgPQwgCoIobt2lxQJSGlFKUaBVL1WgWR0C18fgCr92pdX2UKGgGaAloD0MI0Jfe/pxCc0CUhpRSlGgVS91oFkdAtfIp6gM+eXV9lChoBmgJaA9DCBYzwtuDT3FAlIaUUpRoFUvOaBZHQLXyLlXiiqR1fZQoaAZoCWgPQwhRa5p3nCpvQJSGlFKUaBVL12gWR0C18jhTOxB3dX2UKGgGaAloD0MI3e9QFOg1cUCUhpRSlGgVS8JoFkdAtfJ4d+5OJ3V9lChoBmgJaA9DCMxG5/zUBXNAlIaUUpRoFUvLaBZHQLXye5Jsfq51fZQoaAZoCWgPQwibO/pfLi5yQJSGlFKUaBVNAwFoFkdAtfKEH4XXRXV9lChoBmgJaA9DCG1YU1nUo3JAlIaUUpRoFUvPaBZHQLXyjsu3+dd1fZQoaAZoCWgPQwiGAUuuorlyQJSGlFKUaBVL52gWR0C18t4GD+R6dX2UKGgGaAloD0MIUb01sNVmcUCUhpRSlGgVS8VoFkdAtfLfkxREW3V9lChoBmgJaA9DCGrbMArCUHFAlIaUUpRoFUvcaBZHQLXy4w3o9s91fZQoaAZoCWgPQwht5pDUwgtyQJSGlFKUaBVL2mgWR0C18vHuE25ydX2UKGgGaAloD0MIwsO0b66OckCUhpRSlGgVS+loFkdAtfMBY8uBc3V9lChoBmgJaA9DCAu2EU/2QHFAlIaUUpRoFUvBaBZHQLXzAYQrc0t1fZQoaAZoCWgPQwjL2NDNPgNyQJSGlFKUaBVLxGgWR0C18wy5VfeDdX2UKGgGaAloD0MI3q6XpohGckCUhpRSlGgVS+ZoFkdAtfM4n3L3bnV9lChoBmgJaA9DCPAyw0aZ73FAlIaUUpRoFUvXaBZHQLXzV36AOKB1fZQoaAZoCWgPQwhK628JgEVxQJSGlFKUaBVL4WgWR0C182ovi97GdX2UKGgGaAloD0MIvM6G/PMwcECUhpRSlGgVS8VoFkdAtfOOoegctHV9lChoBmgJaA9DCE1lUdiFKXJAlIaUUpRoFUvhaBZHQLXz1nscABF1fZQoaAZoCWgPQwih9fBl4tVxQJSGlFKUaBVL72gWR0C18+AOJ+DwdX2UKGgGaAloD0MIhzWVRWFfcUCUhpRSlGgVS9JoFkdAtfQWi8FpwnV9lChoBmgJaA9DCG03wTeNJXNAlIaUUpRoFUvCaBZHQLX0JiMYMv11fZQoaAZoCWgPQwgDP6phfydwQJSGlFKUaBVL52gWR0C19FZHmRvFdX2UKGgGaAloD0MI2A+xwQIEc0CUhpRSlGgVS9VoFkdAtfRZ1X/5tXV9lChoBmgJaA9DCGEzwAVZbXNAlIaUUpRoFUvFaBZHQLX0eYMvysl1fZQoaAZoCWgPQwi3t1uSQ5dwQJSGlFKUaBVL8mgWR0C19IDS5RTCdX2UKGgGaAloD0MIXTY652f0cECUhpRSlGgVS8FoFkdAtfSYnRb8nHV9lChoBmgJaA9DCCZxVkTN1G5AlIaUUpRoFUvdaBZHQLX0309hZyN1fZQoaAZoCWgPQwigTnl0I75yQJSGlFKUaBVLzmgWR0C19Ua0dBBzdX2UKGgGaAloD0MIRkQxeUOUckCUhpRSlGgVTZUBaBZHQLX1hM7lq8F1fZQoaAZoCWgPQwjkFYielJJwQJSGlFKUaBVL62gWR0C19Y0PlMh6dX2UKGgGaAloD0MIMLsnD0ssc0CUhpRSlGgVTSABaBZHQLX1kiqyWzF1fZQoaAZoCWgPQwj0TZoGha1yQJSGlFKUaBVLvGgWR0C19bYbGWD6dX2UKGgGaAloD0MIAOZatACScECUhpRSlGgVS/ZoFkdAtfXfhLoOhHV9lChoBmgJaA9DCAxZ3ep53HJAlIaUUpRoFUvtaBZHQLX13yf+S8t1fZQoaAZoCWgPQwhFSrN5XDpzQJSGlFKUaBVL12gWR0C19eTrNW2gdX2UKGgGaAloD0MIDMnJxK0VVsCUhpRSlGgVTQsDaBZHQLX2AjSG8Ep1fZQoaAZoCWgPQwgwSPq0impxQJSGlFKUaBVLyGgWR0C19grAYYR/dX2UKGgGaAloD0MILubnhmZ6cUCUhpRSlGgVS95oFkdAtfYXYcvM83V9lChoBmgJaA9DCEN0CByJnHJAlIaUUpRoFU0LAWgWR0C19lYtDlYEdX2UKGgGaAloD0MI0t9L4cH4cUCUhpRSlGgVTRgCaBZHQLX2YNmDlHV1fZQoaAZoCWgPQwgmcyzvqsZvQJSGlFKUaBVL8GgWR0C19omseXAudX2UKGgGaAloD0MISWO0jirQcUCUhpRSlGgVS89oFkdAtfasBV+7UXV9lChoBmgJaA9DCIv8+iG2o29AlIaUUpRoFUvfaBZHQLX3ApfQa751fZQoaAZoCWgPQwhU4GQbOCVzQJSGlFKUaBVLyWgWR0C19wP2PDHfdX2UKGgGaAloD0MI9BWkGUt3c0CUhpRSlGgVS+loFkdAtfcM3Kji43V9lChoBmgJaA9DCJZa7zdawnFAlIaUUpRoFUvCaBZHQLX3HGPgeil1fZQoaAZoCWgPQwhDGhU42fRxQJSGlFKUaBVL72gWR0C19yF94NZvdX2UKGgGaAloD0MISKRt/IlZcUCUhpRSlGgVS85oFkdAtfcvm7rcCnV9lChoBmgJaA9DCMVwdQCEKnFAlIaUUpRoFUu9aBZHQLX3M1NQCS11fZQoaAZoCWgPQwgG2bJ8XVlyQJSGlFKUaBVL3mgWR0C190uL74zrdX2UKGgGaAloD0MIy/j3GZehcECUhpRSlGgVS95oFkdAtfdqWAwwkHV9lChoBmgJaA9DCCAIkKFju3BAlIaUUpRoFUvfaBZHQLX3d4Wk8A91fZQoaAZoCWgPQwgniLoPgEpyQJSGlFKUaBVLymgWR0C1950ngHeKdX2UKGgGaAloD0MI26M33Ad8ckCUhpRSlGgVS9loFkdAtfeq7xusLnV9lChoBmgJaA9DCAOYMnDA+HBAlIaUUpRoFUviaBZHQLX36tY0VJt1fZQoaAZoCWgPQwiCkZc1sftvQJSGlFKUaBVL2GgWR0C19/4sVclgdX2UKGgGaAloD0MIx7lNuJcrcUCUhpRSlGgVTX0DaBZHQLX4Jb0e2eB1fZQoaAZoCWgPQwgn+KbpM/dvQJSGlFKUaBVL12gWR0C1+FA0TDfndX2UKGgGaAloD0MIX3mQnmJNc0CUhpRSlGgVS8VoFkdAtfhl6w+t83V9lChoBmgJaA9DCHam0HkNInJAlIaUUpRoFUvbaBZHQLX4cYmb9ZR1fZQoaAZoCWgPQwhPyTmxR21wQJSGlFKUaBVL52gWR0C1+HYIF/x2dX2UKGgGaAloD0MIm3RbIpdscECUhpRSlGgVS+xoFkdAtfh10xM363V9lChoBmgJaA9DCMy3Pqx3BXFAlIaUUpRoFUviaBZHQLX4gPC2tuF1fZQoaAZoCWgPQwiHxahrbQNlQJSGlFKUaBVN6ANoFkdAtfiHrkbPyHV9lChoBmgJaA9DCFis4SL3LnNAlIaUUpRoFUviaBZHQLX4pIZIg/11fZQoaAZoCWgPQwjkZyPXjddwQJSGlFKUaBVLzmgWR0C1+LLKzRhMdX2UKGgGaAloD0MIl3X/WAgYckCUhpRSlGgVTQQBaBZHQLX4uOdGy5Z1fZQoaAZoCWgPQwjsvmN4LAVzQJSGlFKUaBVL5WgWR0C1+MQydnTRdX2UKGgGaAloD0MItFcfD71BckCUhpRSlGgVS8xoFkdAtfjaWgOBlXV9lChoBmgJaA9DCMoV3uXivHBAlIaUUpRoFUvdaBZHQLX448uzyBl1fZQoaAZoCWgPQwgLfbCMja9wQJSGlFKUaBVL2WgWR0C1+RuxnnMddX2UKGgGaAloD0MIRtJu9PFfc0CUhpRSlGgVS9poFkdAtfktNBWxQnV9lChoBmgJaA9DCNB9ObMdhXFAlIaUUpRoFUvWaBZHQLX5SMGHHm11fZQoaAZoCWgPQwjrcd9q3TdzQJSGlFKUaBVLyWgWR0C1+XgvDgqFdX2UKGgGaAloD0MIkNsvn+y+cUCUhpRSlGgVS8JoFkdAtfmABp5/snV9lChoBmgJaA9DCPzG154Zi3BAlIaUUpRoFUvPaBZHQLX5i/Glyip1fZQoaAZoCWgPQwjqP2t+fCBxQJSGlFKUaBVL3mgWR0C1+ZLhegL7dX2UKGgGaAloD0MIkZ23sVkVckCUhpRSlGgVS+toFkdAtfmciu+yq3V9lChoBmgJaA9DCBx5ILKIUnBAlIaUUpRoFUvqaBZHQLX5p5ZbILh1fZQoaAZoCWgPQwiXqUnwhmdxQJSGlFKUaBVNEwFoFkdAtfnBIiC8OHV9lChoBmgJaA9DCIOHad/cWXJAlIaUUpRoFUvraBZHQLX55fRNRFZ1fZQoaAZoCWgPQwhvLZPh+AZvQJSGlFKUaBVL7GgWR0C1+e4JeE7GdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 372,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 6,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v7/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9561f1ee82a573d8e68a1af15128df314c390f081920944d406d88a547b02031
|
3 |
+
size 87929
|
ppo-LunarLander-v7/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a4d59cc997d07fb71805d53a09109de61d4e42c03bcc142ab2034945d96e2d8
|
3 |
+
size 43393
|
ppo-LunarLander-v7/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v7/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (209 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 285.9178231263747, "std_reward": 15.922047551596021, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-17T18:28:12.883375"}
|