|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: IndicBERTv2-MLM-only-indic_glue |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# IndicBERTv2-MLM-only-indic_glue |
|
|
|
This model is a fine-tuned version of [ai4bharat/IndicBERTv2-MLM-only](https://huggingface.co/ai4bharat/IndicBERTv2-MLM-only) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1941 |
|
- Precision: 0.8410 |
|
- Recall: 0.8738 |
|
- F1: 0.8571 |
|
- Accuracy: 0.9427 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.5734 | 0.31 | 200 | 0.2794 | 0.7618 | 0.7979 | 0.7794 | 0.9103 | |
|
| 0.2767 | 0.62 | 400 | 0.2182 | 0.8139 | 0.8361 | 0.8248 | 0.9300 | |
|
| 0.218 | 0.94 | 600 | 0.2058 | 0.8167 | 0.8648 | 0.8401 | 0.9365 | |
|
| 0.1758 | 1.25 | 800 | 0.1995 | 0.8311 | 0.8641 | 0.8473 | 0.9380 | |
|
| 0.1366 | 1.56 | 1000 | 0.1928 | 0.8430 | 0.8695 | 0.8561 | 0.9417 | |
|
| 0.1349 | 1.88 | 1200 | 0.1941 | 0.8410 | 0.8738 | 0.8571 | 0.9427 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|