|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-multilingual-cased-indic_glue |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-multilingual-cased-indic_glue |
|
|
|
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2873 |
|
- Precision: 0.8099 |
|
- Recall: 0.8251 |
|
- F1: 0.8175 |
|
- Accuracy: 0.9114 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.6012 | 0.31 | 200 | 0.3849 | 0.7566 | 0.7108 | 0.7330 | 0.8722 | |
|
| 0.377 | 0.62 | 400 | 0.3365 | 0.7696 | 0.7837 | 0.7766 | 0.8886 | |
|
| 0.3205 | 0.94 | 600 | 0.3093 | 0.7875 | 0.7864 | 0.7869 | 0.8961 | |
|
| 0.2517 | 1.25 | 800 | 0.3050 | 0.8039 | 0.8131 | 0.8085 | 0.9050 | |
|
| 0.2034 | 1.56 | 1000 | 0.2950 | 0.8129 | 0.8130 | 0.8130 | 0.9098 | |
|
| 0.1968 | 1.88 | 1200 | 0.2873 | 0.8099 | 0.8251 | 0.8175 | 0.9114 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|